A Sparse Recovery Method on EPC-MIMO Radar System

Kun Liu, Xiongpeng He, G. Liao, Jingwei Xu, Shengqi Zhu, Yifan Guo
{"title":"A Sparse Recovery Method on EPC-MIMO Radar System","authors":"Kun Liu, Xiongpeng He, G. Liao, Jingwei Xu, Shengqi Zhu, Yifan Guo","doi":"10.1109/ICICSP55539.2022.10050632","DOIUrl":null,"url":null,"abstract":"Multiple-Input Multiple-Output Radar with Element-Pulse Coding (EPC) is a novel way to address the performance degradation caused by range ambiguity in space-time adaptive processing. In this paper, we use the sparse recovery method to solve the problem that EPC-MIMO has a large demand for independent and identically distributed (IID) samples. On the one hand, we use the Sparse Bayesian Learning (SBL) to achieve space-time spectral estimation under the small sample condition, and on the other hand, the use of prior knowledge, reduce the redundancy of the sparse recovery dictionary and improve the computational efficiency of the algorithm. The simulation results demonstrate the effectiveness of the proposed method.","PeriodicalId":281095,"journal":{"name":"2022 5th International Conference on Information Communication and Signal Processing (ICICSP)","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Information Communication and Signal Processing (ICICSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICSP55539.2022.10050632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple-Input Multiple-Output Radar with Element-Pulse Coding (EPC) is a novel way to address the performance degradation caused by range ambiguity in space-time adaptive processing. In this paper, we use the sparse recovery method to solve the problem that EPC-MIMO has a large demand for independent and identically distributed (IID) samples. On the one hand, we use the Sparse Bayesian Learning (SBL) to achieve space-time spectral estimation under the small sample condition, and on the other hand, the use of prior knowledge, reduce the redundancy of the sparse recovery dictionary and improve the computational efficiency of the algorithm. The simulation results demonstrate the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EPC-MIMO雷达系统的稀疏恢复方法
多输入多输出单元脉冲编码(EPC)雷达是一种解决空时自适应处理中距离模糊导致性能下降的新方法。本文采用稀疏恢复方法解决了EPC-MIMO对独立同分布(IID)样本需求量大的问题。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Waveform Design and Processing for Joint Detection and Communication Based on MIMO Sonar Systems Joint Angle and Range Estimation with FDA-MIMO Radar in Unknown Mutual Coupling Acoustic Scene Classification for Bone-Conducted Sound Using Transfer Learning and Feature Fusion A Novel Machine Learning Algorithm: Music Arrangement and Timbre Transfer System An Element Selection Enhanced Hybrid Relay-RIS Assisted Communication System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1