Distributed Hedonic Coalition Formation for Multi-Robot Task Allocation

Ayan Dutta, Vladimir Ufimtsev, T. Said, Inmo Jang, R. Eggen
{"title":"Distributed Hedonic Coalition Formation for Multi-Robot Task Allocation","authors":"Ayan Dutta, Vladimir Ufimtsev, T. Said, Inmo Jang, R. Eggen","doi":"10.1109/CASE49439.2021.9551582","DOIUrl":null,"url":null,"abstract":"In this paper, we study the problem of allocating multiple heterogeneous robots to tasks. Due to the limited capabilities of the robots, a task might need more than one robot to complete it. The fundamental problem of optimally partitioning the set of n robots into m disjoint coalitions for allocating to m tasks is proven to be NP-hard. To solve this computationally intractable problem, we propose a distributed hedonic game formulation, where each robot decides to join or not join a team based on the other robots allocated to that particular task. It uses a bipartite matching technique to establish an initial set of coalitions before letting the robots coordinate asynchronously and change teams if desired. Our proposed solution is proved to converge to a Nash-stable solution. Results show that our proposed approach is fast and handles asynchronous robot-to-robot communication while earning more utility (up to 23%) than an existing technique in the majority of the test cases.","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we study the problem of allocating multiple heterogeneous robots to tasks. Due to the limited capabilities of the robots, a task might need more than one robot to complete it. The fundamental problem of optimally partitioning the set of n robots into m disjoint coalitions for allocating to m tasks is proven to be NP-hard. To solve this computationally intractable problem, we propose a distributed hedonic game formulation, where each robot decides to join or not join a team based on the other robots allocated to that particular task. It uses a bipartite matching technique to establish an initial set of coalitions before letting the robots coordinate asynchronously and change teams if desired. Our proposed solution is proved to converge to a Nash-stable solution. Results show that our proposed approach is fast and handles asynchronous robot-to-robot communication while earning more utility (up to 23%) than an existing technique in the majority of the test cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多机器人任务分配的分布式快乐联盟形成
本文研究了多个异构机器人的任务分配问题。由于机器人的能力有限,一项任务可能需要多个机器人来完成。将n个机器人最优划分为m个不相交的联盟以分配给m个任务的基本问题被证明是np困难的。为了解决这个计算上难以解决的问题,我们提出了一个分布式享乐博弈公式,其中每个机器人根据分配给该特定任务的其他机器人决定加入或不加入一个团队。它使用一种二分匹配技术来建立一组初始联盟,然后让机器人异步协调,并在需要时改变团队。我们提出的解收敛于一个纳什稳定解。结果表明,我们提出的方法是快速的,并且处理异步机器人到机器人的通信,同时在大多数测试用例中获得比现有技术更多的实用性(高达23%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planar Pushing of Unknown Objects Using a Large-Scale Simulation Dataset and Few-Shot Learning A configurator for supervisory controllers of roadside systems Maintaining Connectivity in Multi-Rover Networks for Lunar Exploration Missions VLC-SE: Visual-Lengthwise Configuration Self-Estimator of Continuum Robots Multi-zone indoor temperature prediction based on Graph Attention Network and Gated Recurrent Unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1