A novel Network-on-Chip security algorithm for tolerating Byzantine faults

Soultana Ellinidou, G. Sharma, O. Markowitch, G. Gogniat, J. Dricot
{"title":"A novel Network-on-Chip security algorithm for tolerating Byzantine faults","authors":"Soultana Ellinidou, G. Sharma, O. Markowitch, G. Gogniat, J. Dricot","doi":"10.1109/DFT50435.2020.9250906","DOIUrl":null,"url":null,"abstract":"Since the number of processors and cores on a single chip is increasing, the interconnection among them becomes significant. Network-on-Chip (NoC) has direct access to all resources and information within a System-on-Chip (SoC), rendering it appealing to attackers. Malicious attacks targeting NoC are a major cause of performance depletion and they can cause arbitrary behavior of links or routers, that is, Byzantine faults. Byzantine faults have been thoroughly investigated in the context of Distributed systems however not in Very Large Scale Integration (VLSI) systems. Hence, in this paper we propose a novel fault model followed by the design and implementation of lightweight algorithms, based on Software Defined Network-on-Chip (SDNoC) architecture. The proposed algorithms can be used to build highly available NoCs and can tolerate Byzantine faults. Additionally, a set of different scenarios has been simulated and the results demonstrate that by using the proposed algorithms the packet loss decreases between 65% and 76% under Transpose traffic, 67% and 77% under BitReverse and 55% and 66% under Uniform traffic.","PeriodicalId":340119,"journal":{"name":"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT50435.2020.9250906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Since the number of processors and cores on a single chip is increasing, the interconnection among them becomes significant. Network-on-Chip (NoC) has direct access to all resources and information within a System-on-Chip (SoC), rendering it appealing to attackers. Malicious attacks targeting NoC are a major cause of performance depletion and they can cause arbitrary behavior of links or routers, that is, Byzantine faults. Byzantine faults have been thoroughly investigated in the context of Distributed systems however not in Very Large Scale Integration (VLSI) systems. Hence, in this paper we propose a novel fault model followed by the design and implementation of lightweight algorithms, based on Software Defined Network-on-Chip (SDNoC) architecture. The proposed algorithms can be used to build highly available NoCs and can tolerate Byzantine faults. Additionally, a set of different scenarios has been simulated and the results demonstrate that by using the proposed algorithms the packet loss decreases between 65% and 76% under Transpose traffic, 67% and 77% under BitReverse and 55% and 66% under Uniform traffic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的容忍拜占庭故障的片上网络安全算法
由于单个芯片上的处理器和核心数量越来越多,它们之间的互连变得非常重要。片上网络(NoC)可以直接访问片上系统(SoC)中的所有资源和信息,使其对攻击者具有吸引力。针对NoC的恶意攻击是性能消耗的主要原因,它们可能导致链路或路由器的任意行为,即拜占庭故障。拜占庭式故障已经在分布式系统的背景下进行了深入的研究,但在超大规模集成(VLSI)系统中还没有。因此,在本文中,我们提出了一种新的故障模型,然后设计和实现基于软件定义的片上网络(SDNoC)架构的轻量级算法。提出的算法可用于构建高可用性noc,并可容忍拜占庭故障。此外,对一系列不同的场景进行了模拟,结果表明,使用所提出的算法,在转置流量下丢包率降低了65% ~ 76%,在BitReverse下降低了67% ~ 77%,在均匀流量下降低了55% ~ 66%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Variation-Aware Test for Logic Interconnects using Neural Networks – A Case Study A Pipelined Multi-Level Fault Injector for Deep Neural Networks Reliable Classification with Ensemble Convolutional Neural Networks Hardware Accelerator Design with Supervised Machine Learning for Solar Particle Event Prediction Latest Trends in Hardware Security and Privacy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1