An empirical study about the behavior of a genetic learning algorithm on searching spaces pruned by a completeness condition

David García, A. G. Muñoz, Raúl Pérez
{"title":"An empirical study about the behavior of a genetic learning algorithm on searching spaces pruned by a completeness condition","authors":"David García, A. G. Muñoz, Raúl Pérez","doi":"10.1109/GEFS.2013.6601049","DOIUrl":null,"url":null,"abstract":"The main difficulty faced by a learning algorithm is to find the appropriate knowledge inside of the huge search space of possible solutions. Typically, the researchers try to solve this problem developing more efficient search algorithms, defining “ad-hoc” heuristic for the specific problem or reducing the expressiveness of the knowledge representation. This work explores an alternative way that consists of reducing the search space using a completeness condition. The proposed model is implemented on NSLV, a fuzzy rule learning algorithm based on genetic algorithms. We present an experimental study of the behavior of NSLV on pruned search spaces. The experimental results show that when we work with these spaces it is possible to find a good trace-off among prediction capacity, complexity of the knowledge obtained and learning time.","PeriodicalId":362308,"journal":{"name":"2013 IEEE International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEFS.2013.6601049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The main difficulty faced by a learning algorithm is to find the appropriate knowledge inside of the huge search space of possible solutions. Typically, the researchers try to solve this problem developing more efficient search algorithms, defining “ad-hoc” heuristic for the specific problem or reducing the expressiveness of the knowledge representation. This work explores an alternative way that consists of reducing the search space using a completeness condition. The proposed model is implemented on NSLV, a fuzzy rule learning algorithm based on genetic algorithms. We present an experimental study of the behavior of NSLV on pruned search spaces. The experimental results show that when we work with these spaces it is possible to find a good trace-off among prediction capacity, complexity of the knowledge obtained and learning time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于完备性条件的遗传学习算法搜索空间行为的实证研究
学习算法面临的主要困难是在巨大的可能解搜索空间中找到合适的知识。通常,研究人员试图开发更有效的搜索算法来解决这个问题,为特定问题定义“特设”启发式,或者减少知识表示的表达性。这项工作探索了一种替代方法,该方法包括使用完备性条件减少搜索空间。该模型在基于遗传算法的模糊规则学习算法NSLV上实现。我们提出了一个实验研究NSLV在修剪搜索空间上的行为。实验结果表明,当我们处理这些空间时,可以在预测能力、所获得知识的复杂性和学习时间之间找到很好的跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A two-stage multi-objective genetic-fuzzy mining algorithm Effects of data prevalence on species distribution modelling using a genetic takagi-sugeno fuzzy system An empirical study about the behavior of a genetic learning algorithm on searching spaces pruned by a completeness condition Boosting fuzzy rules with low quality data in multi-class problems: Open problems and challenges Estimation of human transport modes by fuzzy spiking neural network and evolution strategy in informationally structured space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1