Boosting fuzzy rules with low quality data in multi-class problems: Open problems and challenges

Ana M. Palacios, L. Sánchez, Inés Couso
{"title":"Boosting fuzzy rules with low quality data in multi-class problems: Open problems and challenges","authors":"Ana M. Palacios, L. Sánchez, Inés Couso","doi":"10.1109/GEFS.2013.6601052","DOIUrl":null,"url":null,"abstract":"Existing extensions of AdaBoost-based fuzzy rule learning to low quality databases yield suboptimal results in multi-class problems. A new procedure is proposed where the original multi-class database is transformed into several multi-label problems that can be tackled with binary AdaBoost. The performance of this proposal is assessed in comparison with other classification schemes for imprecise data. A novel experimental design for imprecise databases is introduced for this last purpose. The new algorithm is applied to a set of real-world and synthetic low quality datasets.","PeriodicalId":362308,"journal":{"name":"2013 IEEE International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEFS.2013.6601052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Existing extensions of AdaBoost-based fuzzy rule learning to low quality databases yield suboptimal results in multi-class problems. A new procedure is proposed where the original multi-class database is transformed into several multi-label problems that can be tackled with binary AdaBoost. The performance of this proposal is assessed in comparison with other classification schemes for imprecise data. A novel experimental design for imprecise databases is introduced for this last purpose. The new algorithm is applied to a set of real-world and synthetic low quality datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多类问题中使用低质量数据增强模糊规则:开放问题和挑战
现有的基于adaboost的模糊规则学习扩展到低质量的数据库,在多类问题中产生次优结果。提出了一种新的方法,将原来的多类数据库转化为多个多标签问题,并利用二进制AdaBoost来解决这些问题。通过与其他不精确数据分类方案的比较,对该方案的性能进行了评价。为此,本文介绍了一种针对不精确数据库的新型实验设计。将新算法应用于一组真实世界和合成的低质量数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A two-stage multi-objective genetic-fuzzy mining algorithm Effects of data prevalence on species distribution modelling using a genetic takagi-sugeno fuzzy system An empirical study about the behavior of a genetic learning algorithm on searching spaces pruned by a completeness condition Boosting fuzzy rules with low quality data in multi-class problems: Open problems and challenges Estimation of human transport modes by fuzzy spiking neural network and evolution strategy in informationally structured space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1