{"title":"Trajectory formation for imitation with nonlinear dynamical systems","authors":"A. Ijspeert, J. Nakanishi, S. Schaal","doi":"10.1109/IROS.2001.976259","DOIUrl":null,"url":null,"abstract":"Explores an approach to learning by imitation and trajectory formation by representing movements as mixtures of nonlinear differential equations with well-defined attractor dynamics. An observed movement is approximated by finding a best fit of the mixture model to its data by a recursive least squares regression technique. In contrast to non-autonomous movement representations like splines, the resultant movement plan remains an autonomous set of nonlinear differential equations that forms a control policy which is robust to strong external perturbations and that can be modified by additional perceptual variables. This movement policy remains the same for a given target, regardless of the initial conditions, and can easily be re-used for new targets. We evaluate the trajectory formation system in the context of a humanoid robot simulation that is part of the Virtual Trainer project, which aims at supervising rehabilitation exercises in stroke-patients. A typical rehabilitation exercise was collected with a Sarcos Sensuit, a device to record joint angular movement from human subjects, and approximated and reproduced with our imitation techniques. Our results demonstrate that multijoint human movements can be encoded successfully, and that this system allows robust modifications of the,movement policy through external variables.","PeriodicalId":319679,"journal":{"name":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"196","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2001.976259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 196

Abstract

Explores an approach to learning by imitation and trajectory formation by representing movements as mixtures of nonlinear differential equations with well-defined attractor dynamics. An observed movement is approximated by finding a best fit of the mixture model to its data by a recursive least squares regression technique. In contrast to non-autonomous movement representations like splines, the resultant movement plan remains an autonomous set of nonlinear differential equations that forms a control policy which is robust to strong external perturbations and that can be modified by additional perceptual variables. This movement policy remains the same for a given target, regardless of the initial conditions, and can easily be re-used for new targets. We evaluate the trajectory formation system in the context of a humanoid robot simulation that is part of the Virtual Trainer project, which aims at supervising rehabilitation exercises in stroke-patients. A typical rehabilitation exercise was collected with a Sarcos Sensuit, a device to record joint angular movement from human subjects, and approximated and reproduced with our imitation techniques. Our results demonstrate that multijoint human movements can be encoded successfully, and that this system allows robust modifications of the,movement policy through external variables.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性动力系统仿真的轨迹形成
探索通过模仿和轨迹形成来学习的方法,将运动表示为具有良好定义的吸引子动力学的非线性微分方程的混合物。通过递归最小二乘回归技术找到混合模型与其数据的最佳拟合来近似观察到的运动。与非自治运动表示(如样条)相反,生成的运动计划仍然是一组自治的非线性微分方程,它形成了一个控制策略,该策略对强外部扰动具有鲁棒性,并且可以通过额外的感知变量进行修改。无论初始条件如何,该移动策略对于给定目标保持相同,并且可以很容易地重新用于新目标。我们在人形机器人模拟的背景下评估轨迹形成系统,这是虚拟教练项目的一部分,旨在监督中风患者的康复训练。使用Sarcos Sensuit(一种记录人类受试者关节角度运动的设备)收集典型的康复练习,并使用我们的模仿技术进行近似和复制。我们的研究结果表明,多关节人体运动可以被成功地编码,并且该系统允许通过外部变量对运动策略进行稳健的修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial finger skin having ridges and distributed tactile sensors used for grasp force control Human-robot cooperative manipulation with motion estimation Integration of constraint logic programming and artificial neural networks for driving robots Simultaneous design of morphology of body, neural systems and adaptability to environment of multi-link-type locomotive robots using genetic programming Effects of limited bandwidth communications channels on the control of multiple robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1