Application of Different Learning Methods for the Modelling of Microstrip Characteristics

N. Soleimani, R. Trinchero, F. Canavero
{"title":"Application of Different Learning Methods for the Modelling of Microstrip Characteristics","authors":"N. Soleimani, R. Trinchero, F. Canavero","doi":"10.1109/EDAPS50281.2020.9312887","DOIUrl":null,"url":null,"abstract":"In this paper, the performance of four machine learning regressions like Support Vector Machine (SVM), Least Square-Support Vector Machine (LS-SVM), Gaussian Process Regression (GPR) and Random Forest method (RF) are investigated by means of an illustrative example referring to the characteristic impedance of a microstrip line in terms of electrical and geometrical parameters. The required dataset for training is obtained from a set of parametric electromagnetic simulations. The performance comparison of the four methods is done in the presence and absence of numerical noise and inaccuracies affecting the training samples. The results of our comparison provide a guidance for the proper method selection to model the electromagnetic characteristics of interconnects for high-speed signals: advantages and drawbacks of each of the proposed techniques clearly emerge from this analysis.","PeriodicalId":137699,"journal":{"name":"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS50281.2020.9312887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the performance of four machine learning regressions like Support Vector Machine (SVM), Least Square-Support Vector Machine (LS-SVM), Gaussian Process Regression (GPR) and Random Forest method (RF) are investigated by means of an illustrative example referring to the characteristic impedance of a microstrip line in terms of electrical and geometrical parameters. The required dataset for training is obtained from a set of parametric electromagnetic simulations. The performance comparison of the four methods is done in the presence and absence of numerical noise and inaccuracies affecting the training samples. The results of our comparison provide a guidance for the proper method selection to model the electromagnetic characteristics of interconnects for high-speed signals: advantages and drawbacks of each of the proposed techniques clearly emerge from this analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同学习方法在微带特性建模中的应用
本文以微带线的电阻抗和几何参数为例,研究了支持向量机(SVM)、最小二乘支持向量机(LS-SVM)、高斯过程回归(GPR)和随机森林方法(RF)四种机器学习回归方法的性能。训练所需的数据集是由一组参数化电磁仿真得到的。在存在和不存在影响训练样本的数值噪声和误差的情况下,对四种方法的性能进行了比较。我们的比较结果为选择合适的方法来模拟高速信号互连的电磁特性提供了指导:每种提出的技术的优点和缺点都从这个分析中清晰地显现出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gaussian Process surrogate model for variability analysis of RF circuits Power Distribution Network Optimization for On-Die Regulator with Laplace Transform Technique Multiphysics challenges with Heterogeneous Integrated Voltage Regulator based Power Delivery Architectures Sub-picosecond Skew Matching On Die SSN Methodology for High Speed IO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1