{"title":"Prediction of Political Leanings of Chinese Speaking Twitter Users","authors":"Fenglei Gu, Duoji Jiang","doi":"10.1109/CONF-SPML54095.2021.00062","DOIUrl":null,"url":null,"abstract":"This work presents a supervised method for generating a classifier model of the stances held by Chinese-speaking politicians and other Twitter users. Many previous works of political tweets prediction exist on English tweets, but to the best of our knowledge, this is the first work that builds prediction model on Chinese political tweets. It firstly collects data by scraping tweets of famous political Figure and their related users. It secondly defines the political spectrum in two groups: the group that shows approvals to the Chinese political establishment and the group that does not. Since there is not space between words in Chinese to identify the independent words, it then completes segmentation and vectorization by Jieba, a Chinese segmentation tool. Finally, it trains the data collected from political tweets and produce a classification model with high accuracy for understanding users’ political stances from their tweets on Twitter.","PeriodicalId":415094,"journal":{"name":"2021 International Conference on Signal Processing and Machine Learning (CONF-SPML)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Signal Processing and Machine Learning (CONF-SPML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONF-SPML54095.2021.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This work presents a supervised method for generating a classifier model of the stances held by Chinese-speaking politicians and other Twitter users. Many previous works of political tweets prediction exist on English tweets, but to the best of our knowledge, this is the first work that builds prediction model on Chinese political tweets. It firstly collects data by scraping tweets of famous political Figure and their related users. It secondly defines the political spectrum in two groups: the group that shows approvals to the Chinese political establishment and the group that does not. Since there is not space between words in Chinese to identify the independent words, it then completes segmentation and vectorization by Jieba, a Chinese segmentation tool. Finally, it trains the data collected from political tweets and produce a classification model with high accuracy for understanding users’ political stances from their tweets on Twitter.