Fluid Dynamics Investigation on the Body Structure Inside a Sleeve Regulating Valve

Jia-yi Wu, Yang Yue, Jia-Ming Yang, Zhi-jiang Jin, J. Qian
{"title":"Fluid Dynamics Investigation on the Body Structure Inside a Sleeve Regulating Valve","authors":"Jia-yi Wu, Yang Yue, Jia-Ming Yang, Zhi-jiang Jin, J. Qian","doi":"10.1115/fedsm2020-20153","DOIUrl":null,"url":null,"abstract":"\n The sleeve regulating valve is a typical flow regulating component, which is indispensable in various industrial applications. This work investigates the effects of the body structure on the overall performance and the flow characteristic of a sleeve regulating valve. The anterior cavity h, the diameter of the center cavity Dc, and the eccentricity of the center cavity e are studied in a parametric way. When the relative increment of h, Dc, and e all take the value of 0.15, the rated flow coefficient Kve of the optimized valve is promoted by 33.99% relative to the Kve of the original model. The optimized model presents less wear between the valve core and the sleeve relative to the original model. It results from the fact that the non-centrosymmetric pressure distribution is reduced on the valve core. Besides, the optimized model has smaller lateral fluid force imposed on the valve core FL than the original model when the relative travel L/Lmax > 0.625, and they have close FL in the other range. Also, the optimized model has larger axial fluid force imposed on the valve core FA than the original model when L/Lmax > 0.875, and they have close FA in the other range.","PeriodicalId":103887,"journal":{"name":"Volume 1: Fluid Applications and Systems; Fluid Measurement and Instrumentation","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Fluid Applications and Systems; Fluid Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2020-20153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The sleeve regulating valve is a typical flow regulating component, which is indispensable in various industrial applications. This work investigates the effects of the body structure on the overall performance and the flow characteristic of a sleeve regulating valve. The anterior cavity h, the diameter of the center cavity Dc, and the eccentricity of the center cavity e are studied in a parametric way. When the relative increment of h, Dc, and e all take the value of 0.15, the rated flow coefficient Kve of the optimized valve is promoted by 33.99% relative to the Kve of the original model. The optimized model presents less wear between the valve core and the sleeve relative to the original model. It results from the fact that the non-centrosymmetric pressure distribution is reduced on the valve core. Besides, the optimized model has smaller lateral fluid force imposed on the valve core FL than the original model when the relative travel L/Lmax > 0.625, and they have close FL in the other range. Also, the optimized model has larger axial fluid force imposed on the valve core FA than the original model when L/Lmax > 0.875, and they have close FA in the other range.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
套筒调节阀阀体结构的流体动力学研究
套筒调节阀是一种典型的流量调节元件,在各种工业应用中是不可缺少的。本文研究了阀体结构对套筒调节阀整体性能和流量特性的影响。采用参数化方法研究了前腔h、中心腔直径Dc和中心腔偏心率e。当h、Dc、e的相对增量均取0.15时,优化后阀门的额定流量系数Kve比原型号的Kve提高了33.99%。优化后的模型与原模型相比,阀芯与套筒之间的磨损较小。这是由于阀芯上的非中心对称压力分布减小所致。当相对行程L/Lmax > 0.625时,优化模型对阀芯液面施加的侧向流体力比原模型小,在其他范围内液面接近。当L/Lmax > 0.875时,优化模型对阀芯的轴向流体力作用FA大于原模型,在其他范围内FA接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Particle Tracking Velocimetry in Noisy Environment Experimental Study of Evaporation Frictional Pressure Drop in Horizontal Enhanced Tube Several Modifications to Improve Numerical Stability of Leishmen-Beddoes Dynamic Stall Model A Comparison of the Flow Structure in a Normal Triangular Tube Array Obtained Based on the SFV Technique and on a CFD Analysis Volumetric Three-Componential Velocity Measurements (V3V) of Flow Structure Behind Mangrove-Root Type Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1