On the evaluation of example-dependent cost-sensitive models for tax debts classification

H. S. Lima, Damires Fernandes, Thiago J. M. Moura
{"title":"On the evaluation of example-dependent cost-sensitive models for tax debts classification","authors":"H. S. Lima, Damires Fernandes, Thiago J. M. Moura","doi":"10.5753/eniac.2022.227607","DOIUrl":null,"url":null,"abstract":"Example-dependent cost-sensitive classification methods are suitable to many real-world classification problems, where the costs, due to misclassification, vary among every example of a dataset. Tax administration applications are included in this segment of problems, since they deal with different values involved in the tax payments. To help matters, this work presents an experimental evaluation which aims to verify whether cost-sensitive learning algorithms are more cost-effective on average than traditional ones. This task is accomplished in a tax administration application domain, what implies the need of a cost-matrix regarding debt values. The obtained results show that cost-sensitive methods avoid situations like erroneously granting a request with a debt involving millions of reals. Considering the savings score, the cost-sensitive classification methods achieved higher results than their traditional method versions.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Example-dependent cost-sensitive classification methods are suitable to many real-world classification problems, where the costs, due to misclassification, vary among every example of a dataset. Tax administration applications are included in this segment of problems, since they deal with different values involved in the tax payments. To help matters, this work presents an experimental evaluation which aims to verify whether cost-sensitive learning algorithms are more cost-effective on average than traditional ones. This task is accomplished in a tax administration application domain, what implies the need of a cost-matrix regarding debt values. The obtained results show that cost-sensitive methods avoid situations like erroneously granting a request with a debt involving millions of reals. Considering the savings score, the cost-sensitive classification methods achieved higher results than their traditional method versions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于实例的税收债务分类成本敏感模型的评价
依赖于示例的代价敏感分类方法适用于许多现实世界的分类问题,其中由于错误分类而导致的代价在数据集的每个示例中都是不同的。税务管理应用程序包含在这部分问题中,因为它们处理涉及纳税的不同值。为了帮助解决问题,这项工作提出了一个实验评估,旨在验证成本敏感学习算法是否比传统算法平均更具成本效益。这项任务是在税务管理应用程序域中完成的,这意味着需要关于债务值的成本矩阵。获得的结果表明,成本敏感的方法避免了错误地批准涉及数百万雷亚尔债务的请求等情况。考虑到节省分数,成本敏感分类方法比传统方法获得了更高的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Learned OWA Operators in Pooling and Channel Aggregation Layers in Convolutional Neural Networks Improving steel making off-gas predictions by mixing classification and regression multi-modal multivariate models A Framework for prediction of dropout in distance learning through XAI techniques in Virtual Learning Environment Textile defect detection using YOLOv5 on AITEX Dataset Aspects of a learned model to predict the quality of life of university students in Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1