{"title":"Layout optimizations for THz integrated circuit design in bulk nanometer CMOS","authors":"W. Steyaert, P. Reynaert","doi":"10.1109/CSICS.2017.8240435","DOIUrl":null,"url":null,"abstract":"Scaling in CMOS has increased the attainable operational frequencies, while greatly increasing the transistor's parasitic modeling complexity. Additionally, the performance of the ever-smaller on-chip passives for mm-wave and THz circuits is being degraded by numerous process requirements and limitations, such as high densities of dummy metals. This work discusses the main transistor layout trade-offs for high-frequency performance in both 40nm and 28nm bulk CMOS. The impact of dummy metals on a single-turn on-chip inductor for mm-wave/THz frequencies is presented, which shows that low dummy metal densities around critical high-frequency passives are essential to minimize degradation in performance.","PeriodicalId":129729,"journal":{"name":"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2017.8240435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Scaling in CMOS has increased the attainable operational frequencies, while greatly increasing the transistor's parasitic modeling complexity. Additionally, the performance of the ever-smaller on-chip passives for mm-wave and THz circuits is being degraded by numerous process requirements and limitations, such as high densities of dummy metals. This work discusses the main transistor layout trade-offs for high-frequency performance in both 40nm and 28nm bulk CMOS. The impact of dummy metals on a single-turn on-chip inductor for mm-wave/THz frequencies is presented, which shows that low dummy metal densities around critical high-frequency passives are essential to minimize degradation in performance.