{"title":"Multi-walled Carbon Nanotube (MWCNT)/PDMS-based Flexible Sensor for Medical Applications","authors":"Kihan Park, Phillip Tran, N. Deaton, J. Desai","doi":"10.1109/ISMR.2019.8710193","DOIUrl":null,"url":null,"abstract":"Flexible sensors using functional materials have been extensively studied due to their significant potential in biomedical applications such as wearable electronics. Multi-walled carbon nanotubes (MWCNTs) that have excellent electrical conductivity enables polydimethylsiloxane (PDMS), a biocompatible silicone, to become conductive and piezoresistive as a nano-filler material in the polymer. Dispersion methods of MWCNT in PDMS and characterization of MWCNT/PDMS elastomers are analyzed to establish an optimal fabrication process. The fabricated MWCNT/PDMS-based flexible sensors have been implemented for two medical applications: 1) tactile sensing for a robotic hand for rehabilitation tasks and 2) strain sensing within a needle for in situ tissue characterization. Since the developed piezoresistive type of sensors are highly flexible, responsive, easy to scale, cost-effective, simply packaged, and biocompatible, they have numerous applications in the biomedical field.","PeriodicalId":404745,"journal":{"name":"2019 International Symposium on Medical Robotics (ISMR)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Symposium on Medical Robotics (ISMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMR.2019.8710193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Flexible sensors using functional materials have been extensively studied due to their significant potential in biomedical applications such as wearable electronics. Multi-walled carbon nanotubes (MWCNTs) that have excellent electrical conductivity enables polydimethylsiloxane (PDMS), a biocompatible silicone, to become conductive and piezoresistive as a nano-filler material in the polymer. Dispersion methods of MWCNT in PDMS and characterization of MWCNT/PDMS elastomers are analyzed to establish an optimal fabrication process. The fabricated MWCNT/PDMS-based flexible sensors have been implemented for two medical applications: 1) tactile sensing for a robotic hand for rehabilitation tasks and 2) strain sensing within a needle for in situ tissue characterization. Since the developed piezoresistive type of sensors are highly flexible, responsive, easy to scale, cost-effective, simply packaged, and biocompatible, they have numerous applications in the biomedical field.