Efe Öztürk, D. Genschow, U. Yodprasit, Berk Yilmaz, D. Kissinger, W. Debski, W. Winkler
{"title":"A 60 GHz SiGe BiCMOS double receive channel transceiver for radar applications","authors":"Efe Öztürk, D. Genschow, U. Yodprasit, Berk Yilmaz, D. Kissinger, W. Debski, W. Winkler","doi":"10.23919/EUMIC.2017.8230711","DOIUrl":null,"url":null,"abstract":"In this paper, a 60 GHz double receive channel FMCW transceiver measurement results together with the design procedure and simulations are presented, considering the license free ISM band. 0.13μm SiGe BiCMOS technology having 250/340 GHz of fr/fmax is utilized to fabricate this fully integrated chip with a die area of 1.65 × 1.05 mm2. The chip is composed of two receiver channels including I/Q based downconverter with a conversion gain and input referred 1dB compression point of 23 dB and −26 dBm respectively at 60 GHz and a transmitter block of over 10 dBm output power combined with a 3-way power divider for the LO signal generated by a 3-bit push-push VCO and a divide-by-32 frequency divider. The total current consumption of this block is 230 mA at 3.3 V of single supply. With the help of three 4-patch on-board antennas designed on a standard high frequency material and I/Q signal processing baseband boards, successful outdoor FMCW system measurements with the proposed transceiver are achieved where obstacles above 70m are detectable.","PeriodicalId":120932,"journal":{"name":"2017 12th European Microwave Integrated Circuits Conference (EuMIC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th European Microwave Integrated Circuits Conference (EuMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUMIC.2017.8230711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this paper, a 60 GHz double receive channel FMCW transceiver measurement results together with the design procedure and simulations are presented, considering the license free ISM band. 0.13μm SiGe BiCMOS technology having 250/340 GHz of fr/fmax is utilized to fabricate this fully integrated chip with a die area of 1.65 × 1.05 mm2. The chip is composed of two receiver channels including I/Q based downconverter with a conversion gain and input referred 1dB compression point of 23 dB and −26 dBm respectively at 60 GHz and a transmitter block of over 10 dBm output power combined with a 3-way power divider for the LO signal generated by a 3-bit push-push VCO and a divide-by-32 frequency divider. The total current consumption of this block is 230 mA at 3.3 V of single supply. With the help of three 4-patch on-board antennas designed on a standard high frequency material and I/Q signal processing baseband boards, successful outdoor FMCW system measurements with the proposed transceiver are achieved where obstacles above 70m are detectable.