An 11 GHz–Bandwidth Variable Gain Ka–Band Power Amplifier for 5G Applications

R. Bagger, H. Sjöland
{"title":"An 11 GHz–Bandwidth Variable Gain Ka–Band Power Amplifier for 5G Applications","authors":"R. Bagger, H. Sjöland","doi":"10.1109/ESSCIRC.2019.8902927","DOIUrl":null,"url":null,"abstract":"A Ka–band, 32–43 GHz, differential power amplifier (PA) for millimeter wave applications is presented. The PA is a three stage design with a nominal gain of 36 dB. A device periphery ratio of 1:2:4 is adopted for pre–driver, driver and final stage, respectively. To enable use of 2.7 V supply, a cascode topology was employed in all three stages. The input is 80 Ω differential and the output load is 50 Ω single ended. The PA has a variable gain of 36 ± 11 dB for use as variable gain amplifier. A saturation power of 17.8 dBm was measured at 35 GHz with a small signal gain of 34.5 dB, including output losses of 2–2.5 dB over band. The design is based on magnetically coupled parallel resonators to obtain the required bandwidth. A SiGe HBT BiCMOS process with fMAX = 330 GHz was used for fabrication. The PA is part of a front–end design, and its output thus faces an antenna interface with integrated LNA and TX/RX switches, and the input is connected to an on-chip variable gain amplifier.","PeriodicalId":402948,"journal":{"name":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2019.8902927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A Ka–band, 32–43 GHz, differential power amplifier (PA) for millimeter wave applications is presented. The PA is a three stage design with a nominal gain of 36 dB. A device periphery ratio of 1:2:4 is adopted for pre–driver, driver and final stage, respectively. To enable use of 2.7 V supply, a cascode topology was employed in all three stages. The input is 80 Ω differential and the output load is 50 Ω single ended. The PA has a variable gain of 36 ± 11 dB for use as variable gain amplifier. A saturation power of 17.8 dBm was measured at 35 GHz with a small signal gain of 34.5 dB, including output losses of 2–2.5 dB over band. The design is based on magnetically coupled parallel resonators to obtain the required bandwidth. A SiGe HBT BiCMOS process with fMAX = 330 GHz was used for fabrication. The PA is part of a front–end design, and its output thus faces an antenna interface with integrated LNA and TX/RX switches, and the input is connected to an on-chip variable gain amplifier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于5G应用的11 ghz带宽可变增益ka波段功率放大器
提出了一种用于毫米波应用的ka波段32 - 43ghz差分功率放大器(PA)。扩音器为三级设计,标称增益为36db。预驱动、驱动、末级采用1:2:4的设备外围比。为了能够使用2.7 V电源,在所有三个级中都采用了级联编码拓扑。输入为80 Ω差分,输出负载为50 Ω单端。该放大器具有36±11 dB的可变增益,可作为可变增益放大器使用。在35 GHz频段测量到17.8 dBm的饱和功率,信号增益为34.5 dB,包括2-2.5 dB的带上输出损耗。该设计基于磁耦合并联谐振器来获得所需的带宽。采用fMAX = 330 GHz的SiGe HBT BiCMOS工艺进行制造。放大器是前端设计的一部分,因此其输出面向集成LNA和TX/RX开关的天线接口,输入连接到片上可变增益放大器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A 78 fs RMS Jitter Injection-Locked Clock Multiplier Using Transformer-Based Ultra-Low-Power VCO An Integrated Programmable High-Voltage Bipolar Pulser With Embedded Transmit/Receive Switch for Miniature Ultrasound Probes Machine Learning Based Prior-Knowledge-Free Calibration for Split Pipelined-SAR ADCs with Open-Loop Amplifiers Achieving 93.7-dB SFDR An 18 dBm 155-180 GHz SiGe Power Amplifier Using a 4-Way T-Junction Combining Network A Bidirectional Brain Computer Interface with 64-Channel Recording, Resonant Stimulation and Artifact Suppression in Standard 65nm CMOS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1