{"title":"Performance Evaluation of Active and Non-active Electrodes for Doxorubicin Electro-oxidation","authors":"E. Gil, E. K. Moreno, L. F. Garcia, J. J. L. Léon","doi":"10.18502/keg.v5i6.7017","DOIUrl":null,"url":null,"abstract":"Electrochemical remediation is an innovative technique that utilizes electro-oxidation reactions to degrade micropollutants such as doxorubicin (DOX) that is a drug widely used to treat many types of cancer, and it is present in hospital effluents. The aim of this work is to evaluate the efficiency of active and non-active electrodes in DOX degradation during electrochemical treatments. AuO-TiO2@graphite, a nanostructured electrode, and BDD, a commercial electrode, were used as active and non-active electrodes respectively. DOX treatments were realized at concentration of 1.25 mmol L-1 in medium with 10 mmol L-1 NaCl as support electrolyte. Studies were realized in 5 V of voltage source. Results: The treatment of DOX with BDD promoted 100% of DOX degradation in 20 min, while the same result was obtained for the AuO-TiO2@graphite in 40 min of treatment. Also, the modified electrode presented an energy expenditure of 1.12 kWh m-3 and the BDD achieved 0.462 kWh m-3. Thus, the active and non-active electrodes were efficient to promote DOX degradation, and the BDD, the non-active electrode demonstrated a better performance. \nKeywords: Eletro-Oxidadion, Modified Graphite Anodes, BDD, Doxorubicin, Micropollutants","PeriodicalId":106635,"journal":{"name":"KnE Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KnE Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/keg.v5i6.7017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Electrochemical remediation is an innovative technique that utilizes electro-oxidation reactions to degrade micropollutants such as doxorubicin (DOX) that is a drug widely used to treat many types of cancer, and it is present in hospital effluents. The aim of this work is to evaluate the efficiency of active and non-active electrodes in DOX degradation during electrochemical treatments. AuO-TiO2@graphite, a nanostructured electrode, and BDD, a commercial electrode, were used as active and non-active electrodes respectively. DOX treatments were realized at concentration of 1.25 mmol L-1 in medium with 10 mmol L-1 NaCl as support electrolyte. Studies were realized in 5 V of voltage source. Results: The treatment of DOX with BDD promoted 100% of DOX degradation in 20 min, while the same result was obtained for the AuO-TiO2@graphite in 40 min of treatment. Also, the modified electrode presented an energy expenditure of 1.12 kWh m-3 and the BDD achieved 0.462 kWh m-3. Thus, the active and non-active electrodes were efficient to promote DOX degradation, and the BDD, the non-active electrode demonstrated a better performance.
Keywords: Eletro-Oxidadion, Modified Graphite Anodes, BDD, Doxorubicin, Micropollutants