Machine Learning Approach for Predictive Maintenance in Hydroelectric Power Plants

Victor Velasquez, W. Flores
{"title":"Machine Learning Approach for Predictive Maintenance in Hydroelectric Power Plants","authors":"Victor Velasquez, W. Flores","doi":"10.1109/ARGENCON55245.2022.9939782","DOIUrl":null,"url":null,"abstract":"The future of hydropower industry has as key elements, optimization in operation and maintenance, costs reduction and increase of reliability. This means greater challenges in the operation of hydroelectric power plants, therefore, greater demands in maintenance. With technology advances and its role in the industrial sector through the revolution 4.0 or Industry 4.0, artificial intelligence and machine learning applications enables the development and modernization of current maintenance techniques in hydropower plants, through condition monitoring, fault diagnosis and predictive maintenance, thus, an early detection can save a lot of time and money.In this study, two techniques are proposed to enable predictive maintenance in the Peña Blanca hydroelectric power plant, using two deep learning models for anomaly detection. The first one consists of a Deep Neural Network with Logistic Regression to classify various types of failures, for the second one a Recurrent Long Short-Term Memory neural network (LSTM) with Autoencoder is used to classify various flaws. With the first model it was found that it is possible to generalize several types of failures, while the LSTM model adjust better on detecting high temperatures on generator bearings since was a failure that occurred frequently during the study.","PeriodicalId":318846,"journal":{"name":"2022 IEEE Biennial Congress of Argentina (ARGENCON)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Biennial Congress of Argentina (ARGENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARGENCON55245.2022.9939782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The future of hydropower industry has as key elements, optimization in operation and maintenance, costs reduction and increase of reliability. This means greater challenges in the operation of hydroelectric power plants, therefore, greater demands in maintenance. With technology advances and its role in the industrial sector through the revolution 4.0 or Industry 4.0, artificial intelligence and machine learning applications enables the development and modernization of current maintenance techniques in hydropower plants, through condition monitoring, fault diagnosis and predictive maintenance, thus, an early detection can save a lot of time and money.In this study, two techniques are proposed to enable predictive maintenance in the Peña Blanca hydroelectric power plant, using two deep learning models for anomaly detection. The first one consists of a Deep Neural Network with Logistic Regression to classify various types of failures, for the second one a Recurrent Long Short-Term Memory neural network (LSTM) with Autoencoder is used to classify various flaws. With the first model it was found that it is possible to generalize several types of failures, while the LSTM model adjust better on detecting high temperatures on generator bearings since was a failure that occurred frequently during the study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水力发电厂预测性维护的机器学习方法
优化运维、降低成本、提高可靠性是水电行业未来发展的关键要素。这意味着水力发电厂的运行面临更大的挑战,因此对维护的要求也更高。随着技术的进步及其在工业4.0或工业4.0革命中的作用,人工智能和机器学习应用通过状态监测、故障诊断和预测性维护,使水电站当前维护技术的发展和现代化成为可能,因此,早期检测可以节省大量的时间和金钱。在本研究中,提出了两种技术来实现Peña Blanca水电站的预测性维护,使用两种深度学习模型进行异常检测。第一种是基于逻辑回归的深度神经网络对各种故障进行分类,第二种是基于自编码器的循环长短期记忆神经网络(LSTM)对各种故障进行分类。使用第一个模型,发现可以概括几种类型的故障,而LSTM模型在检测发电机轴承的高温时调整得更好,因为这是研究期间经常发生的故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Propuestas de normativas para la disposición final de equipamientos de un parque eólico al finalizar su vida productiva Proyecto Laboratorios remotos en carreras de ingeniería de la Universidad Nacional de Tucumán Control de un convertidor DC-DC con puentes duales activos para adaptar niveles de tensión en microrredes de DC usando linealización por realimentación Las Competencias Transversales en Ingeniería. El Seminario Taller Como Herramienta Metodológica Procedimiento de sintonizado de tanques resonantes LCC para carga inalámbrica de vehículos eléctricos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1