Predicting total secondary electron emission from porous surfaces using a 3D pore geometry

J. Sattler, R. Lake, T. Laurvick, Kullen W. Waggoner
{"title":"Predicting total secondary electron emission from porous surfaces using a 3D pore geometry","authors":"J. Sattler, R. Lake, T. Laurvick, Kullen W. Waggoner","doi":"10.1109/NAECON.2017.8268774","DOIUrl":null,"url":null,"abstract":"Multipactor is a critical problem in satellites and vacuum electron devices (VEDs). Described as an “avalanche” of electrons in radio frequency (RF) and microwave devices under vacuum, multipactor is caused by repeated secondary electron emission (SEE) stimulated by a time-varying electric field. Its effects range in severity from a temporary disruption in device operation to arcing, melting, cracking, or destruction of the device. A new and promising field of multipactor suppression research is engineering the internal surface topography of a VED to limit the secondary electron yield (SEY) to unity or less. Such low values of SEY render impossible the growth in electron population that is necessary to initiate the electron avalanche in a multipactor. We have developed a new model to predict the SEY of a porous surface which is useful to determine optimal topographies to control SEY. In order to assess how porous surfaces will be effected by extreme temperatures encountered in space we performed thermomechanical simulations of single gold pores. Finally, we discuss the design and fabrication of various microporous and nanoporous surfaces that will be used to validate the model in a future experimental SEY study.","PeriodicalId":306091,"journal":{"name":"2017 IEEE National Aerospace and Electronics Conference (NAECON)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2017.8268774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multipactor is a critical problem in satellites and vacuum electron devices (VEDs). Described as an “avalanche” of electrons in radio frequency (RF) and microwave devices under vacuum, multipactor is caused by repeated secondary electron emission (SEE) stimulated by a time-varying electric field. Its effects range in severity from a temporary disruption in device operation to arcing, melting, cracking, or destruction of the device. A new and promising field of multipactor suppression research is engineering the internal surface topography of a VED to limit the secondary electron yield (SEY) to unity or less. Such low values of SEY render impossible the growth in electron population that is necessary to initiate the electron avalanche in a multipactor. We have developed a new model to predict the SEY of a porous surface which is useful to determine optimal topographies to control SEY. In order to assess how porous surfaces will be effected by extreme temperatures encountered in space we performed thermomechanical simulations of single gold pores. Finally, we discuss the design and fabrication of various microporous and nanoporous surfaces that will be used to validate the model in a future experimental SEY study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用三维孔隙几何预测多孔表面的总二次电子发射
多因子是卫星和真空电子器件中的一个关键问题。多因子被描述为真空条件下射频(RF)和微波器件中的电子“雪崩”,是由时变电场刺激下的重复二次电子发射(SEE)引起的。其影响的严重程度从设备操作的暂时中断到电弧、熔化、开裂或设备的破坏。多因素抑制研究的一个新的和有前途的领域是工程的内部表面形貌,以限制二次电子产率(SEY)为1或更少。如此低的SEY值使得在多因子中启动电子雪崩所必需的电子居群增长变得不可能。我们建立了一个新的模型来预测多孔表面的表面位移,这对于确定控制表面位移的最佳地形是有用的。为了评估在太空中遇到的极端温度对多孔表面的影响,我们对单个金孔进行了热力学模拟。最后,我们讨论了各种微孔和纳米孔表面的设计和制造,这些表面将用于在未来的实验SEY研究中验证模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and analysis of wafer-level vacuum-encapsulated disk resonator gyroscope using a commercial MEMS process Visible but transparent hardware Trojans in clock generation circuits Memristor crossbar based implementation of a multilayer perceptron Design of tunable shunt and series interdigital capacitors based on vanadium dioxide thin film A novel hybrid delay based physical unclonable function immune to machine learning attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1