Reinforcement Learning Based Optimal Load Shedding for Transient Stabilization

Yunhe Wei, Al-Amin B. Bugaje, Federica Bellizio, G. Strbac
{"title":"Reinforcement Learning Based Optimal Load Shedding for Transient Stabilization","authors":"Yunhe Wei, Al-Amin B. Bugaje, Federica Bellizio, G. Strbac","doi":"10.1109/ISGT-Europe54678.2022.9960657","DOIUrl":null,"url":null,"abstract":"Power system stability is one of the crucial parts of power system operation. In combination with preventive control, corrective control can enhance the power system stability while reducing preventive control costs and increase grid asset utilization. However, it is hard to quantitatively determine the most cost-effective corrective control strategy in the short-time following the faults when there are transient conditions. In the proposed approach, reinforcement learning using a Deep Q Network is used to fast determine the optimized load shedding for different operating conditions to maintain the system stability following faults. A case study on the IEEE 9 bus system is used to test the proposed approach, showing promising performance in terms of accuracy, costs, and reduction in computational times when compared to existing approaches.","PeriodicalId":311595,"journal":{"name":"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT-Europe54678.2022.9960657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Power system stability is one of the crucial parts of power system operation. In combination with preventive control, corrective control can enhance the power system stability while reducing preventive control costs and increase grid asset utilization. However, it is hard to quantitatively determine the most cost-effective corrective control strategy in the short-time following the faults when there are transient conditions. In the proposed approach, reinforcement learning using a Deep Q Network is used to fast determine the optimized load shedding for different operating conditions to maintain the system stability following faults. A case study on the IEEE 9 bus system is used to test the proposed approach, showing promising performance in terms of accuracy, costs, and reduction in computational times when compared to existing approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于强化学习的暂态稳定最优减载
电力系统的稳定性是电力系统运行的重要组成部分之一。纠偏控制与预防控制相结合,可以在提高电力系统稳定性的同时降低预防控制成本,提高电网资产利用率。然而,在存在暂态条件的情况下,很难定量确定故障发生后短时间内最经济有效的纠偏控制策略。在该方法中,使用深度Q网络的强化学习来快速确定不同运行条件下的最佳减载,以保持系统在故障后的稳定性。通过对IEEE 9总线系统的一个案例研究来测试所提出的方法,与现有方法相比,在准确性、成本和减少计算时间方面显示出有希望的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of HVDC Fault Ride-Through and Continuous Reactive Current Support on Transient Stability in Meshed AC/DC Transmission Grids On the role of demand response and key CCHP technologies for increased integration of variable renewable energy into a microgrid Recuperation of railcar braking energy using energy storage at station level Towards Risk Assessment of Smart Grids with Heterogeneous Assets Application of shunt active power filters in active distribution networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1