Research on Neural Network Based Image and Video Denoising

Z. Luo
{"title":"Research on Neural Network Based Image and Video Denoising","authors":"Z. Luo","doi":"10.1109/CONF-SPML54095.2021.00023","DOIUrl":null,"url":null,"abstract":"Noises are inevitable in images and videos. Many denoising algorithms have been proposed. As the acquirement of image and video qualities gets higher, algorithms with high performances and easy implementation are the new trend. With the development of deep learning, neural network has been applied in denoising algorithms. These methods represent better performances and obtain video of high quality. In this paper, we will discuss several denoising methods for both images and videos on their architectures, analyze their features and comment. Finally, we will carefully forecast what neural network based denoising modules can be built in the future study.","PeriodicalId":415094,"journal":{"name":"2021 International Conference on Signal Processing and Machine Learning (CONF-SPML)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Signal Processing and Machine Learning (CONF-SPML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONF-SPML54095.2021.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Noises are inevitable in images and videos. Many denoising algorithms have been proposed. As the acquirement of image and video qualities gets higher, algorithms with high performances and easy implementation are the new trend. With the development of deep learning, neural network has been applied in denoising algorithms. These methods represent better performances and obtain video of high quality. In this paper, we will discuss several denoising methods for both images and videos on their architectures, analyze their features and comment. Finally, we will carefully forecast what neural network based denoising modules can be built in the future study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的图像和视频去噪研究
在图像和视频中,噪音是不可避免的。人们提出了许多去噪算法。随着对图像和视频质量的要求越来越高,高性能、易于实现的算法成为新的发展趋势。随着深度学习的发展,神经网络在去噪算法中得到了应用。这些方法具有较好的性能,可以获得高质量的视频。在本文中,我们将讨论图像和视频的几种去噪方法,分析它们的特征并进行评论。最后,我们将仔细预测在未来的研究中可以建立哪些基于神经网络的去噪模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Two-stage Adaptive Weight-adjusting Interference Cancellation Demodulation Technology Based on SLIC and CWIC for NOMA Stabilization with the Idea of Notch Filter in Automatic Control System Remote Sensing Image Classification Methods Based on CNN: Challenge and Trends An Overview of Recommender Systems and Its Next Generation: Context-Aware Recommender Systems Manifold Guided Graph Neural Networks for Skeleton-based Action Recognition in Human Computer Interaction Videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1