{"title":"Análise Comportamental por Meio de Características com os Classificadores SVM e MLP Para Detecção de Traços Autísticos em Adultos","authors":"Roney Nogueira de Sousa, R. Brito, J. Ximenes","doi":"10.5753/ercemapi.2021.17902","DOIUrl":null,"url":null,"abstract":"O transtorno do especto autista (TEA) intriga pesquisadores no mundo inteiro. Nesse sentido esse trabalho aborda um estudo sobre o uso da Inteligência Artificial (IA) como ferramenta auxiliar para rastreio do TEA em adultos. Este trabalho teve como objetivo desenvolver um sistema auxiliar com base nos classificadores SVM e MLP como ferramenta de detecção de traços autísticos em adultos. A metodologia foi implementada com base em 610 amostras de indivíduos com/sem o TEA de um banco de dados público, através do software WEKA utilizando o SVM e a MLP, validação cruzada k-fold, z-score e a técnica SMOTE. Os resultados mostraram para a acurácia do SVM uma taxa média de 99,48% enquanto que para a MLP foi de 95,42%.","PeriodicalId":422707,"journal":{"name":"Anais da IX Escola Regional de Computação Ceará, Maranhão, Piauí (ERCEMAPI 2021)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais da IX Escola Regional de Computação Ceará, Maranhão, Piauí (ERCEMAPI 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/ercemapi.2021.17902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
O transtorno do especto autista (TEA) intriga pesquisadores no mundo inteiro. Nesse sentido esse trabalho aborda um estudo sobre o uso da Inteligência Artificial (IA) como ferramenta auxiliar para rastreio do TEA em adultos. Este trabalho teve como objetivo desenvolver um sistema auxiliar com base nos classificadores SVM e MLP como ferramenta de detecção de traços autísticos em adultos. A metodologia foi implementada com base em 610 amostras de indivíduos com/sem o TEA de um banco de dados público, através do software WEKA utilizando o SVM e a MLP, validação cruzada k-fold, z-score e a técnica SMOTE. Os resultados mostraram para a acurácia do SVM uma taxa média de 99,48% enquanto que para a MLP foi de 95,42%.