Improving Spam Detection Using Neural Networks Trained by Memetic Algorithm

Shaveen Singh, Anish Chand, S. Lal
{"title":"Improving Spam Detection Using Neural Networks Trained by Memetic Algorithm","authors":"Shaveen Singh, Anish Chand, S. Lal","doi":"10.1109/CIMSIM.2013.18","DOIUrl":null,"url":null,"abstract":"In this paper we train an Artificial Neural Network (ANN) using Memetic Algorithm (MA) and evaluate its performance on the UCI spambase dataset. The Memetic algorithm incorporates the local search capacity of Simulated Annealing (SA) and the global search capability of Genetic Algorithm (GA) to optimize the parameters of the ANN. The performance of the MA is compared with traditional GA in training the ANN. We further explore the different parameters, mechanisms and architectures used to optimize the performance of the network and attain a practical balance between the global genetic algorithm and the local search technique. Classification using ANN trained by MA yielded better results on the spambase dataset compared with other algorithms reported in literature.","PeriodicalId":249355,"journal":{"name":"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSIM.2013.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper we train an Artificial Neural Network (ANN) using Memetic Algorithm (MA) and evaluate its performance on the UCI spambase dataset. The Memetic algorithm incorporates the local search capacity of Simulated Annealing (SA) and the global search capability of Genetic Algorithm (GA) to optimize the parameters of the ANN. The performance of the MA is compared with traditional GA in training the ANN. We further explore the different parameters, mechanisms and architectures used to optimize the performance of the network and attain a practical balance between the global genetic algorithm and the local search technique. Classification using ANN trained by MA yielded better results on the spambase dataset compared with other algorithms reported in literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用模因算法训练神经网络改进垃圾邮件检测
本文利用模因算法(Memetic Algorithm, MA)训练了一个人工神经网络(ANN),并在UCI spambase数据集上对其性能进行了评估。Memetic算法结合了模拟退火算法(SA)的局部搜索能力和遗传算法(GA)的全局搜索能力来优化神经网络的参数。将遗传算法与传统遗传算法在训练人工神经网络中的性能进行了比较。我们进一步探讨了用于优化网络性能的不同参数、机制和架构,并在全局遗传算法和局部搜索技术之间取得了实际的平衡。与文献中报道的其他算法相比,在spambase数据集上使用经过MA训练的ANN进行分类产生了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Software Quality Standards on Commercial Product Development and Customer Satisfaction for Software Industry in Pakistan Bringing Semantic Resources Together in the Cloud: From Theory to Application A Unified Architecture for a Dual Field ECC Processor Applicable to AES Comparison of Back Propagation and Resilient Propagation Algorithm for Spam Classification HIPAA Based Predictive Analytics for an Adaptive and Descriptive Mobile Healthcare System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1