Alcohols detection based on Pd-doped SnO2 sensors

A. L. Paredes-Doig, Maria del Rosario Sun-Kou, G. Comina
{"title":"Alcohols detection based on Pd-doped SnO2 sensors","authors":"A. L. Paredes-Doig, Maria del Rosario Sun-Kou, G. Comina","doi":"10.1109/IBERSENSOR.2014.6995514","DOIUrl":null,"url":null,"abstract":"In this paper a series of sensors based on SnO2 doped by impregnation with Pd, with a ratio of 1% to 5% were prepared. These sensors have shown good sensitivity for different alcohols (ethanol, n-butanol and 1-octanol). The characterization of the doped SnO2 was performed using N2 adsorption-desorption by the Brunauer-Emmett-Teller (SBET) surface area analysis, and Scanning Electron Microscopy (SEM). The gas sensor's behaviour for different alcohol-vapours and different working temperature were analyzed. Although the fabrication technique does not give us a uniform and well shaped film, it was observed that the response signal of the sensor changes proportionally with the sensing temperature. The higher voltage response to ethanol was obtained with the sensor 5% Pd-SnO2 film, and also it has been obtained good signal reproducibility when alcohols (ethanol, n-butanol and 1-octanol) were measured under the same conditions.","PeriodicalId":296271,"journal":{"name":"2014 IEEE 9th IberoAmerican Congress on Sensors","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 9th IberoAmerican Congress on Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBERSENSOR.2014.6995514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper a series of sensors based on SnO2 doped by impregnation with Pd, with a ratio of 1% to 5% were prepared. These sensors have shown good sensitivity for different alcohols (ethanol, n-butanol and 1-octanol). The characterization of the doped SnO2 was performed using N2 adsorption-desorption by the Brunauer-Emmett-Teller (SBET) surface area analysis, and Scanning Electron Microscopy (SEM). The gas sensor's behaviour for different alcohol-vapours and different working temperature were analyzed. Although the fabrication technique does not give us a uniform and well shaped film, it was observed that the response signal of the sensor changes proportionally with the sensing temperature. The higher voltage response to ethanol was obtained with the sensor 5% Pd-SnO2 film, and also it has been obtained good signal reproducibility when alcohols (ethanol, n-butanol and 1-octanol) were measured under the same conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于pd掺杂SnO2传感器的醇类检测
本文制备了一系列以1% ~ 5%的Pd浸渍SnO2为基础的传感器。这些传感器对不同的醇(乙醇、正丁醇和辛醇)具有良好的灵敏度。通过brunauer - emmet - teller (SBET)表面积分析和扫描电子显微镜(SEM)对掺杂SnO2进行了N2吸附-解吸表征。分析了不同酒精蒸汽和不同工作温度下气体传感器的性能。虽然制作技术不能得到均匀且形状良好的薄膜,但观察到传感器的响应信号随传感温度成比例地变化。采用5% Pd-SnO2薄膜的传感器对乙醇具有较高的电压响应,在相同条件下对乙醇、正丁醇和辛醇等醇类进行测量,也具有良好的信号再现性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and implementation of a planar capacitive pressure sensor Flow-injection amperometric sensor for quantification and speciation of iron Development of a low-cost packaging for MEMS pressure sensors Detection of pathogenic bacteria using immunofiltration and lightscribe technology TEOS plasma polymerized films: Impact of clustered material in humidity measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1