Dynamic Task Remapping for Reliable CNN Training on ReRAM Crossbars

C. Tung, Biresh Kumar Joardar, P. Pande, J. Doppa, Hai Helen Li, K. Chakrabarty
{"title":"Dynamic Task Remapping for Reliable CNN Training on ReRAM Crossbars","authors":"C. Tung, Biresh Kumar Joardar, P. Pande, J. Doppa, Hai Helen Li, K. Chakrabarty","doi":"10.23919/DATE56975.2023.10137238","DOIUrl":null,"url":null,"abstract":"A ReRAM crossbar-based computing system (RCS) can accelerate CNN training. However, hardware faults due to manufacturing defects and limited endurance impede the widespread adoption of RCS. We propose a dynamic task remapping-based technique for reliable CNN training on faulty RCS. Experimental results demonstrate that the proposed low-overhead method incurs only 0.85% accuracy loss on average while training popular CNNs such as VGGs, ResNets, and SqueezeNet with the CIFAR-IO, CIFAR-100, and SVHN datasets in the presence of faults.","PeriodicalId":340349,"journal":{"name":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE56975.2023.10137238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A ReRAM crossbar-based computing system (RCS) can accelerate CNN training. However, hardware faults due to manufacturing defects and limited endurance impede the widespread adoption of RCS. We propose a dynamic task remapping-based technique for reliable CNN training on faulty RCS. Experimental results demonstrate that the proposed low-overhead method incurs only 0.85% accuracy loss on average while training popular CNNs such as VGGs, ResNets, and SqueezeNet with the CIFAR-IO, CIFAR-100, and SVHN datasets in the presence of faults.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ReRAM横梁的CNN可靠训练动态任务映射
一种基于ReRAM交叉栏的计算系统(RCS)可以加速CNN的训练。然而,由于制造缺陷和有限的耐用性导致的硬件故障阻碍了RCS的广泛采用。提出了一种基于动态任务重映射的CNN故障训练方法。实验结果表明,使用CIFAR-IO、CIFAR-100和SVHN数据集训练vgg、ResNets和SqueezeNet等流行的cnn时,在存在故障的情况下,所提出的低开销方法平均准确率损失仅为0.85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Securing a RISC-V architecture: A dynamic approach Perspector: Benchmarking Benchmark Suites Fast Behavioural RTL Simulation of 10B Transistor SoC Designs with Metro-Mpi Lightspeed Binary Neural Networks using Optical Phase-Change Materials Time Series-based Driving Event Recognition for Two Wheelers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1