Front

Farid Feyzi, Saeed Parsa
{"title":"Front","authors":"Farid Feyzi, Saeed Parsa","doi":"10.1109/isocc47750.2019.9027737","DOIUrl":null,"url":null,"abstract":"In this paper, a novel approach, Inforence, is proposed to isolate the suspicious codes that likely contain faults. Inforence employs a feature selection method, based on mutual information, to identify those bug-related statements that may cause the program to fail. Because the majority of a program faults may be revealed as undesired joint effect of the program statements on each other and on program termination state, unlike the state-of-the-art methods, Inforence tries to identify and select groups of interdependent statements which altogether may affect the program failure. The interdependence amongst the statements is measured according to their mutual effect on each other and on the program termination state. To provide the context of failure, the selected bug-related statements are chained to each other, considering the program static structure. Eventually, the resultant cause-effect chains are ranked according to their combined causal effect on program failure. To validate Inforence, the results of our experiments with seven sets of programs include Siemens suite, gzip, grep, sed, space, make and bash are presented. The experimental results are then compared with those provided by different fault localization techniques for the both single-fault and multi-fault programs. The experimental results prove the outperformance of the proposed method compared to the state-of-the-art techniques.","PeriodicalId":113802,"journal":{"name":"2019 International SoC Design Conference (ISOCC)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/isocc47750.2019.9027737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a novel approach, Inforence, is proposed to isolate the suspicious codes that likely contain faults. Inforence employs a feature selection method, based on mutual information, to identify those bug-related statements that may cause the program to fail. Because the majority of a program faults may be revealed as undesired joint effect of the program statements on each other and on program termination state, unlike the state-of-the-art methods, Inforence tries to identify and select groups of interdependent statements which altogether may affect the program failure. The interdependence amongst the statements is measured according to their mutual effect on each other and on the program termination state. To provide the context of failure, the selected bug-related statements are chained to each other, considering the program static structure. Eventually, the resultant cause-effect chains are ranked according to their combined causal effect on program failure. To validate Inforence, the results of our experiments with seven sets of programs include Siemens suite, gzip, grep, sed, space, make and bash are presented. The experimental results are then compared with those provided by different fault localization techniques for the both single-fault and multi-fault programs. The experimental results prove the outperformance of the proposed method compared to the state-of-the-art techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
前面
本文提出了一种新的方法——信息源来分离可能包含错误的可疑代码。infoence采用基于互信息的特征选择方法来识别那些可能导致程序失败的与bug相关的语句。因为大多数程序错误可能被揭示为程序语句对彼此和程序终止状态的不希望的联合影响,与最先进的方法不同,reference试图识别和选择可能影响程序失败的相互依存语句组。语句之间的相互依赖是根据它们对彼此的影响以及对程序终止状态的影响来衡量的。为了提供失败的上下文,考虑到程序的静态结构,所选择的与错误相关的语句被链接到彼此之间。最后,根据它们对程序失败的综合因果效应对结果因果链进行排序。为了验证ence的有效性,给出了我们使用Siemens suite、gzip、grep、sed、space、make和bash等7套程序的实验结果。并将实验结果与单故障和多故障定位方法的结果进行了比较。实验结果证明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-carrier Signal Detection using Convolutional Neural Networks An RRAM-based Analog Neuron Design for the Weighted Spiking Neural network NTX: A 260 Gflop/sW Streaming Accelerator for Oblivious Floating-Point Algorithms in 22 nm FD-SOI A Low-Power 20 Gbps Multi-phase MDLL-based Digital CDR with Receiver Equalization Scaling Bit-Flexible Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1