{"title":"Improving Group Search Optimization Through Local Search Heuristics for Automatic Data Clustering","authors":"L. Pacífico, Teresa B Ludermir","doi":"10.5753/eniac.2022.227578","DOIUrl":null,"url":null,"abstract":"Neste trabalho, três models de Agrupamento Automático de Dados, baseados na meta-heurística de Otimização por Busca em Grupo (GSO), são introduzidos, chamados RHGSO, ADHGSO e BDHGSO. Nos modelos propostos, a busca global do GSO é melhorada através de heurísticas de busca local adaptadas ao contexto de Agrupamento Automático de Dados, onde operações de ativação, desativação e substituição de centroides de agrupamentos são executadas, objetivando a realização de perturbações que visam o aumento da velocidade de exploração do grupo do GSO. Os algoritmos propostos são comparados a outros Algoritmos Evolucionários e de Inteligência de Enxames da literatura, apresentando resultados promissores.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"23 22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Neste trabalho, três models de Agrupamento Automático de Dados, baseados na meta-heurística de Otimização por Busca em Grupo (GSO), são introduzidos, chamados RHGSO, ADHGSO e BDHGSO. Nos modelos propostos, a busca global do GSO é melhorada através de heurísticas de busca local adaptadas ao contexto de Agrupamento Automático de Dados, onde operações de ativação, desativação e substituição de centroides de agrupamentos são executadas, objetivando a realização de perturbações que visam o aumento da velocidade de exploração do grupo do GSO. Os algoritmos propostos são comparados a outros Algoritmos Evolucionários e de Inteligência de Enxames da literatura, apresentando resultados promissores.