Protection of SiC MOSFET from Negative Gate Voltage Spikes with a Low-Voltage GaN HEMT

Ji Shu, Jiahui Sun, Zheyang Zheng, K. J. Chen
{"title":"Protection of SiC MOSFET from Negative Gate Voltage Spikes with a Low-Voltage GaN HEMT","authors":"Ji Shu, Jiahui Sun, Zheyang Zheng, K. J. Chen","doi":"10.1109/ISPSD57135.2023.10147444","DOIUrl":null,"url":null,"abstract":"The false turn-on induced by the gate loop parasitic and Miller capacitance during the fast switching transient of SiC MOSFET leads to increased switching loss, circuit oscillation and even shoot-through. Using a negative OFF-state gate voltage $V_{\\text{GS}-} \\text{off}$ can effectively mitigate the false turn-on issue. However, this approach also raises the magnitude of negative gate voltage spikes that occur during the fall of $V_{\\text{DS}}$, leading to unwanted negative gate overstress. In this work, a simple GaN-HEMT-based gate clamping circuit (GCC) is designed for SiC MOSFET negative gate voltage spike clamping. Thanks to the fast switching speed of GaN HEMT, GCC can clamp the negative spike effectively even at a high slew rate of $V_{\\text{DS}}$ (120 V/ns), protecting the gate from overstress when negative $V_{\\text{GS}-\\text{off}}$ is applied to suppress false turn-on.","PeriodicalId":344266,"journal":{"name":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD57135.2023.10147444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The false turn-on induced by the gate loop parasitic and Miller capacitance during the fast switching transient of SiC MOSFET leads to increased switching loss, circuit oscillation and even shoot-through. Using a negative OFF-state gate voltage $V_{\text{GS}-} \text{off}$ can effectively mitigate the false turn-on issue. However, this approach also raises the magnitude of negative gate voltage spikes that occur during the fall of $V_{\text{DS}}$, leading to unwanted negative gate overstress. In this work, a simple GaN-HEMT-based gate clamping circuit (GCC) is designed for SiC MOSFET negative gate voltage spike clamping. Thanks to the fast switching speed of GaN HEMT, GCC can clamp the negative spike effectively even at a high slew rate of $V_{\text{DS}}$ (120 V/ns), protecting the gate from overstress when negative $V_{\text{GS}-\text{off}}$ is applied to suppress false turn-on.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用低压GaN HEMT保护SiC MOSFET免受负栅电压尖峰的影响
在SiC MOSFET的快速开关瞬态过程中,门环寄生和米勒电容诱发的误导通导致开关损耗增大、电路振荡甚至通断。使用负的关断状态栅极电压$V_{\text{GS}-} \text{off}$可以有效地缓解误导通问题。然而,这种方法也提高了在$V_{\text{DS}}$下降期间发生的负栅极电压尖峰的幅度,导致不必要的负栅极过应力。本文设计了一种简单的基于gan - hemt的栅极箝位电路(GCC),用于SiC MOSFET负栅极电压尖峰箝位。由于GaN HEMT的快速开关速度,即使在$V_{\text{GS}-\text{off}}$的高压转率下,GCC也能有效箝位负尖峰,保护栅极在施加负$V_{\text{GS}-\text{off}}$抑制假导通时免受过应力的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3.0-V-Threshold-Voltage p-GaN HEMTs with Low-Loss Reverse Conduction capability Gate Current Peaks Due to CGD Overcharge in SiC MOSFETs Under Short-Circuit Test Failure Process of GaN-HEMTs by Repetitive Overvoltage Stress Novel Multifunctional Transient Voltage Suppressor Technology for Modular EOS/ESD Protection Circuit Designs Single-Back and Double-Front Gate-Controlled IGBT for Achieving Low Turn-Off Loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1