{"title":"A multiscale model derivation and simulation tool for MEMS arrays","authors":"Bin Yang, W. Belkhir, M. Lenczner, N. Ratier","doi":"10.1109/EUROSIME.2013.6529977","DOIUrl":null,"url":null,"abstract":"We introduce a framework for computer-aided derivation of multi-scale models dedicated to arrays of microsystems. It relies on a combination of a asymptotic methods used in the field of partial differential equations with term rewriting techniques coming from computer science. In our approach, a multi-scale model derivation is characterized by the features taken into account in the asymptotic analyses. Its formulation consists in a derivation of a reference model associated to an elementary nominal model, and in a set of transformations to apply to this proof until it takes into account the wanted features. In addition to the reference model proof, the framework includes first order rewriting principles designed for asymptotic model derivations, and second order rewriting principles dedicated to transformations of model derivations. We apply the method to generate a family of homogenized models for second order elliptic equations with periodic coefficients that could be posed in multi-dimensional domains, with possibly multi-domains and/or thin domains. The transfer of asymptotic models into a finite element software package is illustrated through an example of a model of periodic cantilever arrays.","PeriodicalId":270532,"journal":{"name":"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 14th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2013.6529977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We introduce a framework for computer-aided derivation of multi-scale models dedicated to arrays of microsystems. It relies on a combination of a asymptotic methods used in the field of partial differential equations with term rewriting techniques coming from computer science. In our approach, a multi-scale model derivation is characterized by the features taken into account in the asymptotic analyses. Its formulation consists in a derivation of a reference model associated to an elementary nominal model, and in a set of transformations to apply to this proof until it takes into account the wanted features. In addition to the reference model proof, the framework includes first order rewriting principles designed for asymptotic model derivations, and second order rewriting principles dedicated to transformations of model derivations. We apply the method to generate a family of homogenized models for second order elliptic equations with periodic coefficients that could be posed in multi-dimensional domains, with possibly multi-domains and/or thin domains. The transfer of asymptotic models into a finite element software package is illustrated through an example of a model of periodic cantilever arrays.