{"title":"Effect of Moonpool Shape and Dimensions on Drillship Operability","authors":"D. Chalkias, J. Krijger","doi":"10.1115/OMAE2018-77499","DOIUrl":null,"url":null,"abstract":"All modern drillships are equipped with moonpools, through which drilling and other subsea operations are performed. The operability of the vessel, is the percentage of time that the vessel can perform a specific operation in a specific location not limited by environmental conditions. Specific operations such as lowering a BOP or X-tree through the splash zone, have strict operability criteria and often a drillship is waiting on weather to perform these operations.\n In this paper, the underwater shape of the moonpool of a drillship is varied and the operability of the vessel is calculated and compared to the original shape. Ten moonpool configurations are used for the study. The GustoMSC “Galene” moonpool shape is used which is comprised of an upper and a lower chamber. The lower chamber or cutout step dimensions such as length, breadth and height are the variables for this study.\n An analytical method originally proposed by Newman [1] and extended by Chalkias and Krijger [2] is used in this optimization study. The method is comprised of a potential flow radiation/diffraction solver, where the moonpool modes are accounted as additional separate generalized modes. In this way each mode can be damped separately.\n In order to calculate the damping factors for the moonpool modes used in the potential flow solver, free decay CFD calculations are performed and a P-Q analysis is applied on the resulting time-traces. Additional regular wave CFD calculations are performed for method validation purposes. The efficiency and ease of the proposed method is demonstrated by calculating the responses and operability of multiple shape variations in the frequency domain.","PeriodicalId":106551,"journal":{"name":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2018-77499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
All modern drillships are equipped with moonpools, through which drilling and other subsea operations are performed. The operability of the vessel, is the percentage of time that the vessel can perform a specific operation in a specific location not limited by environmental conditions. Specific operations such as lowering a BOP or X-tree through the splash zone, have strict operability criteria and often a drillship is waiting on weather to perform these operations.
In this paper, the underwater shape of the moonpool of a drillship is varied and the operability of the vessel is calculated and compared to the original shape. Ten moonpool configurations are used for the study. The GustoMSC “Galene” moonpool shape is used which is comprised of an upper and a lower chamber. The lower chamber or cutout step dimensions such as length, breadth and height are the variables for this study.
An analytical method originally proposed by Newman [1] and extended by Chalkias and Krijger [2] is used in this optimization study. The method is comprised of a potential flow radiation/diffraction solver, where the moonpool modes are accounted as additional separate generalized modes. In this way each mode can be damped separately.
In order to calculate the damping factors for the moonpool modes used in the potential flow solver, free decay CFD calculations are performed and a P-Q analysis is applied on the resulting time-traces. Additional regular wave CFD calculations are performed for method validation purposes. The efficiency and ease of the proposed method is demonstrated by calculating the responses and operability of multiple shape variations in the frequency domain.