High performance adaptive sensor interface design through model based estimation of analog non-idealities

Sumit Adhikari, Muhammad Farooq, Jan Haase, C. Grimm
{"title":"High performance adaptive sensor interface design through model based estimation of analog non-idealities","authors":"Sumit Adhikari, Muhammad Farooq, Jan Haase, C. Grimm","doi":"10.1109/DDECS.2011.5783044","DOIUrl":null,"url":null,"abstract":"Accurate and sufficient design of AMS signal paths is always being a challenge for system designers requiring high simulation performance of the analog model which also incorporates circuit level non-idealities. The new SystemC AMS extensions offer high simulation performance as well as capabilities of incorporating circuit level non-ideal effects. In this paper we modelled a low Over Sampling Ratio (OSR), second order Sigma Delta (ΣΔ) Analog to Digital Converter (ADC) which incorporates non-ideal effects like sampling jitter, kBT/CS noise, switch non-linearities, band-gap noise and operational amplifier non-idealities (such as finite gain, finite bandwidth, gain nonlinearity, slew rate, leakage and saturation effect). The ADC shows a performance bottle neck of 16 bits. State-of-Art signal conditioning techniques use adaptive correction methods inside the analog part or inside the DSP part of the ADC making it more complicated to realize. In our design we have implemented the adaptive filtration within the micro-controller to correct the noise ground as well as large signal non-linear effects to produce an output which is 20-bits clean, proving sufficiency of low order and low OSR of a ΣΔ ADC for 20 bit resolution as well as a simplified adaptive filtration scheme alleviating the need of adaptive blocks within the ADC.","PeriodicalId":231389,"journal":{"name":"14th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS.2011.5783044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Accurate and sufficient design of AMS signal paths is always being a challenge for system designers requiring high simulation performance of the analog model which also incorporates circuit level non-idealities. The new SystemC AMS extensions offer high simulation performance as well as capabilities of incorporating circuit level non-ideal effects. In this paper we modelled a low Over Sampling Ratio (OSR), second order Sigma Delta (ΣΔ) Analog to Digital Converter (ADC) which incorporates non-ideal effects like sampling jitter, kBT/CS noise, switch non-linearities, band-gap noise and operational amplifier non-idealities (such as finite gain, finite bandwidth, gain nonlinearity, slew rate, leakage and saturation effect). The ADC shows a performance bottle neck of 16 bits. State-of-Art signal conditioning techniques use adaptive correction methods inside the analog part or inside the DSP part of the ADC making it more complicated to realize. In our design we have implemented the adaptive filtration within the micro-controller to correct the noise ground as well as large signal non-linear effects to produce an output which is 20-bits clean, proving sufficiency of low order and low OSR of a ΣΔ ADC for 20 bit resolution as well as a simplified adaptive filtration scheme alleviating the need of adaptive blocks within the ADC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型估计模拟非理想性的高性能自适应传感器接口设计
精确和充分的AMS信号路径设计一直是系统设计人员的挑战,他们要求模拟模型具有高仿真性能,同时也包含电路级非理想性。新的SystemC AMS扩展提供了高仿真性能以及集成电路级非理想效果的能力。在本文中,我们模拟了一个低过采样比(OSR),二阶Sigma Delta (ΣΔ)模数转换器(ADC),它包含非理想效果,如采样抖动,kBT/CS噪声,开关非线性,带隙噪声和运算放大器非理想性(如有限增益,有限带宽,增益非线性,摆率,泄漏和饱和效应)。ADC的性能瓶颈为16位。最先进的信号调理技术在ADC的模拟部分或DSP部分使用自适应校正方法,使其实现起来更加复杂。在我们的设计中,我们在微控制器内实现了自适应滤波,以纠正噪声接地以及大信号非线性效应,以产生20位干净的输出,证明ΣΔ ADC的低阶和低OSR足以满足20位分辨率,以及简化的自适应滤波方案,减轻了ADC内自适应块的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Behavioral model of TRNG based on oscillator rings implemented in FPGA CAD tool for PLL Design High-performance hardware accelerators for sorting and managing priorities Defect-oriented module-level fault diagnosis in digital circuits Design-for-Test method for high-speed ADCs: Behavioral description and optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1