Single User WiFi Structure from Motion in the Wild

Yiming Qian, Hang Yan, Sachini Herath, Pyojin Kim, Yasutaka Furukawa
{"title":"Single User WiFi Structure from Motion in the Wild","authors":"Yiming Qian, Hang Yan, Sachini Herath, Pyojin Kim, Yasutaka Furukawa","doi":"10.1109/icra46639.2022.9812340","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel motion estimation algorithm using WiFi networks and IMU sensor data in large uncontrolled environments, dubbed “WiFi Structure-from-Motion” (WiFi SfM). Given smartphone sensor data through day-to-day activities from a single user over a month, our WiFi SfM algorithm estimates smartphone motion tra-jectories and the structure of the environment represented as a WiFi radio map. The approach 1) establishes frame-to-frame correspondences based on WiFi fingerprints while exploiting our repetitive behavior patterns; 2) aligns trajectories via bundle adjustment; and 3) trains a self-supervised neural network to extract further motion constraints. We have col-lected 235 hours of smartphone data, spanning 38 days of daily activities in a university campus. Our experiments demonstrate the effectiveness of our approach over the competing methods with qualitative evaluations of the estimated motions and quantitative evaluations of indoor localization accuracy based on the reconstructed WiFi radio map. The WiFi SfM technology will potentially allow digital mapping companies to build better radio maps automatically by asking users to share WiFi/IMU sensor data in their daily activities.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9812340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel motion estimation algorithm using WiFi networks and IMU sensor data in large uncontrolled environments, dubbed “WiFi Structure-from-Motion” (WiFi SfM). Given smartphone sensor data through day-to-day activities from a single user over a month, our WiFi SfM algorithm estimates smartphone motion tra-jectories and the structure of the environment represented as a WiFi radio map. The approach 1) establishes frame-to-frame correspondences based on WiFi fingerprints while exploiting our repetitive behavior patterns; 2) aligns trajectories via bundle adjustment; and 3) trains a self-supervised neural network to extract further motion constraints. We have col-lected 235 hours of smartphone data, spanning 38 days of daily activities in a university campus. Our experiments demonstrate the effectiveness of our approach over the competing methods with qualitative evaluations of the estimated motions and quantitative evaluations of indoor localization accuracy based on the reconstructed WiFi radio map. The WiFi SfM technology will potentially allow digital mapping companies to build better radio maps automatically by asking users to share WiFi/IMU sensor data in their daily activities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单用户WiFi结构从运动在野外
本文提出了一种利用WiFi网络和IMU传感器数据在大型非受控环境下进行运动估计的新算法,称为“WiFi结构-来自运动”(WiFi SfM)。给定单个用户在一个月内的日常活动的智能手机传感器数据,我们的WiFi SfM算法估计智能手机的运动轨迹和以WiFi无线地图表示的环境结构。该方法1)利用我们的重复行为模式,建立基于WiFi指纹的帧对帧对应关系;2)通过束调整调整轨迹;3)训练自监督神经网络提取进一步的运动约束。我们收集了235小时的智能手机数据,涵盖了大学校园38天的日常活动。我们的实验证明了我们的方法与基于重建WiFi无线地图的估计运动的定性评估和室内定位精度的定量评估的竞争方法相比的有效性。WiFi SfM技术将允许数字地图公司通过要求用户在日常活动中共享WiFi/IMU传感器数据来自动构建更好的无线地图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Can your drone touch? Exploring the boundaries of consumer-grade multirotors for physical interaction Underwater Dock Detection through Convolutional Neural Networks Trained with Artificial Image Generation Immersive Virtual Walking System Using an Avatar Robot R2poweR: The Proof-of-Concept of a Backdrivable, High-Ratio Gearbox for Human-Robot Collaboration* Cityscapes TL++: Semantic Traffic Light Annotations for the Cityscapes Dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1