Reducing test time of embedded SRAMs

Baosheng Wang, Josh Yang, A. Ivanov
{"title":"Reducing test time of embedded SRAMs","authors":"Baosheng Wang, Josh Yang, A. Ivanov","doi":"10.1109/MTDT.2003.1222360","DOIUrl":null,"url":null,"abstract":"Compared with traditional functional fault models, fault model obtained from an Inductive Fault Analysis (IFA) test flow can provide an attractive basis for obtaining a good estimate of the overall test quality in terms of defect level and yield. However, the associated surging test time due to increased SRAM capacity is becoming a major challenge when testing either standalone or embedded SRAMs. This paper refines the functional fault models translated from defect simulations for embedded SRAMs with IFA proposed and described. Reconsidering the defect causes of the functional faults allows us to simplify the functional fault model FFM2 and formulate the test time required for detecting Data Retention Faults. We combine this simplification with the consideration of specific memory redundancy elements to develop a new March 6N Test algorithm. Simulation results reveal that our proposed fault modeling and test generation algorithm can reduce total test time to one half or less of that required by the methodology, while maintaining the same defect and fault coverage.","PeriodicalId":412381,"journal":{"name":"Records of the 2003 International Workshop on Memory Technology, Design and Testing","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Records of the 2003 International Workshop on Memory Technology, Design and Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MTDT.2003.1222360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Compared with traditional functional fault models, fault model obtained from an Inductive Fault Analysis (IFA) test flow can provide an attractive basis for obtaining a good estimate of the overall test quality in terms of defect level and yield. However, the associated surging test time due to increased SRAM capacity is becoming a major challenge when testing either standalone or embedded SRAMs. This paper refines the functional fault models translated from defect simulations for embedded SRAMs with IFA proposed and described. Reconsidering the defect causes of the functional faults allows us to simplify the functional fault model FFM2 and formulate the test time required for detecting Data Retention Faults. We combine this simplification with the consideration of specific memory redundancy elements to develop a new March 6N Test algorithm. Simulation results reveal that our proposed fault modeling and test generation algorithm can reduce total test time to one half or less of that required by the methodology, while maintaining the same defect and fault coverage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
减少嵌入式ram的测试时间
与传统的功能故障模型相比,从电感故障分析(IFA)测试流程中获得的故障模型可以为从缺陷水平和成品率方面获得对整体测试质量的良好估计提供有吸引力的基础。然而,随着SRAM容量的增加,测试时间的增加成为测试独立或嵌入式SRAM的主要挑战。本文对嵌入式sram缺陷仿真转化而来的功能故障模型进行了改进,提出并描述了IFA。重新考虑功能故障的缺陷原因,我们可以简化功能故障模型FFM2,并制定检测Data Retention fault所需的测试时间。我们将这种简化与特定内存冗余元素的考虑结合起来,开发了一种新的March 6N Test算法。仿真结果表明,本文提出的故障建模和测试生成算法可以在保持相同缺陷和故障覆盖率的情况下,将总测试时间减少到方法所需时间的一半或更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ITRS commodity memory roadmap A testability-driven optimizer and wrapper generator for embedded memories Systematic memory test generation for DRAM defects causing two floating nodes A 40 ns random access time low voltage 2Mbits EEPROM memory for embedded applications Reducing test time of embedded SRAMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1