A Study and Comparison of Different Sparse Bayesian Learning Algorithms in DOA Estimation

Yuyang Shao, Hui Ma, Hongzhi Liu
{"title":"A Study and Comparison of Different Sparse Bayesian Learning Algorithms in DOA Estimation","authors":"Yuyang Shao, Hui Ma, Hongzhi Liu","doi":"10.1109/ICICSP55539.2022.10050600","DOIUrl":null,"url":null,"abstract":"The direction of arrival (DOA) is a typical sparse parameter estimation problem. Its solution methods include greedy algorithm, norm minimization method and Bayesian estimation, in which the Bayesian methods are superior in estimation accuracy, but huge amount of computation has become the bottle-neck. This paper analyzes and compares the computation complexity of sparse Bayesian learning (SBL), multi-task sparse Bayesian learning (MSBL) and inverse-free sparse Bayesian learning (IFSBL) in DOA estimation. Simulations are also provided and prove that IFSBL is much better than SBL and MSBL in operational efficiency.","PeriodicalId":281095,"journal":{"name":"2022 5th International Conference on Information Communication and Signal Processing (ICICSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Information Communication and Signal Processing (ICICSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICSP55539.2022.10050600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The direction of arrival (DOA) is a typical sparse parameter estimation problem. Its solution methods include greedy algorithm, norm minimization method and Bayesian estimation, in which the Bayesian methods are superior in estimation accuracy, but huge amount of computation has become the bottle-neck. This paper analyzes and compares the computation complexity of sparse Bayesian learning (SBL), multi-task sparse Bayesian learning (MSBL) and inverse-free sparse Bayesian learning (IFSBL) in DOA estimation. Simulations are also provided and prove that IFSBL is much better than SBL and MSBL in operational efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同稀疏贝叶斯学习算法在DOA估计中的研究与比较
到达方向(DOA)是一个典型的稀疏参数估计问题。其求解方法包括贪心算法、范数最小化法和贝叶斯估计,其中贝叶斯方法在估计精度上具有优势,但巨大的计算量成为瓶颈。仿真结果表明,IFSBL在运行效率上明显优于SBL和MSBL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Waveform Design and Processing for Joint Detection and Communication Based on MIMO Sonar Systems Joint Angle and Range Estimation with FDA-MIMO Radar in Unknown Mutual Coupling Acoustic Scene Classification for Bone-Conducted Sound Using Transfer Learning and Feature Fusion A Novel Machine Learning Algorithm: Music Arrangement and Timbre Transfer System An Element Selection Enhanced Hybrid Relay-RIS Assisted Communication System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1