{"title":"Fault tolerant localization for teams of distributed robots","authors":"R. Tinós, L. Navarro-Serment, C. Paredis","doi":"10.1109/IROS.2001.976309","DOIUrl":null,"url":null,"abstract":"To combine sensor information from distributed robot teams, it is critical to know the locations of all the robots relative to each other. This paper presents a novel fault tolerant localization algorithm developed for centimeter-scale robots, called Millibots. To determine their locations, the Millibots measure the distances between themselves with an ultrasonic distance sensor. They then combine these distance measurements with dead reckoning in a maximum likelihood estimator. The focus of this paper is on detecting and isolating measurement faults that commonly occur in this localization system. Such failures include dead reckoning errors when the robots collide with undetected obstacles, and distance measurement errors due to destructive interference between direct and multi-path ultrasound wavefronts. Simulations show that the fault tolerance algorithm accurately detects erroneous measurements and significantly improves the reliability and accuracy of the localization system.","PeriodicalId":319679,"journal":{"name":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2001.976309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
To combine sensor information from distributed robot teams, it is critical to know the locations of all the robots relative to each other. This paper presents a novel fault tolerant localization algorithm developed for centimeter-scale robots, called Millibots. To determine their locations, the Millibots measure the distances between themselves with an ultrasonic distance sensor. They then combine these distance measurements with dead reckoning in a maximum likelihood estimator. The focus of this paper is on detecting and isolating measurement faults that commonly occur in this localization system. Such failures include dead reckoning errors when the robots collide with undetected obstacles, and distance measurement errors due to destructive interference between direct and multi-path ultrasound wavefronts. Simulations show that the fault tolerance algorithm accurately detects erroneous measurements and significantly improves the reliability and accuracy of the localization system.