R. Siddique, L. Liedtke, H. Park, S. Y. Lee, H. Raniwala, D. Y. Park, D. Lim, H. Choo
{"title":"Nanophotonic sensor implants with 3D hybrid periodic-amorphous photonic crystals for wide-angle monitoring of long-term in-vivo intraocular pressure","authors":"R. Siddique, L. Liedtke, H. Park, S. Y. Lee, H. Raniwala, D. Y. Park, D. Lim, H. Choo","doi":"10.1109/IEDM13553.2020.9372016","DOIUrl":null,"url":null,"abstract":"Glaucoma, one of the leading cause of irreversible blindness, is largely caused by an elevated intraocular pressure (IOP). However, current IOP monitoring techniques inherit major disadvantages such as imprecision, no real or long time monitoring, and difficult readout. Here, we report on a highly miniaturized (200 um thick) optomechanical nanophotonic sensor implant for long-term, continuous and on-demand IOP monitoring. This IOP sensor is made of a flexible 3D hybrid photonic crystals (HPC) that functions as a pressure-sensitive optical resonator (0.1 nm/mm Hg) and delivers IOP readings when interrogated with near-infrared light with an average accuracy of 0.56 mm Hg over the range of 0–40 mm Hg. A new fabrication process is developed using colloidal self-assembly leading to a single step formation of hybrid periodic and amorphous layers exploiting the inverse process of a drying \"coffee-stain\" effect. The HPC results in a wide-angle strong resonance of ±40° ensuring an easy and accurate remote and long readout distance. 8 sensors were mounted inside the anterior chamber in New Zealand white rabbits and provided continuous, accurate measurements of IOP with handheld detector for up to 6 months with no signs of inflammation.","PeriodicalId":415186,"journal":{"name":"2020 IEEE International Electron Devices Meeting (IEDM)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM13553.2020.9372016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Glaucoma, one of the leading cause of irreversible blindness, is largely caused by an elevated intraocular pressure (IOP). However, current IOP monitoring techniques inherit major disadvantages such as imprecision, no real or long time monitoring, and difficult readout. Here, we report on a highly miniaturized (200 um thick) optomechanical nanophotonic sensor implant for long-term, continuous and on-demand IOP monitoring. This IOP sensor is made of a flexible 3D hybrid photonic crystals (HPC) that functions as a pressure-sensitive optical resonator (0.1 nm/mm Hg) and delivers IOP readings when interrogated with near-infrared light with an average accuracy of 0.56 mm Hg over the range of 0–40 mm Hg. A new fabrication process is developed using colloidal self-assembly leading to a single step formation of hybrid periodic and amorphous layers exploiting the inverse process of a drying "coffee-stain" effect. The HPC results in a wide-angle strong resonance of ±40° ensuring an easy and accurate remote and long readout distance. 8 sensors were mounted inside the anterior chamber in New Zealand white rabbits and provided continuous, accurate measurements of IOP with handheld detector for up to 6 months with no signs of inflammation.
青光眼是不可逆失明的主要原因之一,主要由眼压升高引起。然而,目前的IOP监测技术存在着不精确、不能实时监测或长时间监测、读数困难等主要缺点。在这里,我们报道了一种高度小型化(200um厚)的光机械纳米光子传感器植入物,用于长期、连续和按需监测IOP。该IOP传感器由柔性3D混合光子晶体(HPC)制成,可作为压敏光学谐振器(0.1 nm/mm Hg),并在近红外光下提供IOP读数,在0-40 mm Hg范围内平均精度为0.56 mm Hg。利用胶体自组装技术开发了一种新的制造工艺,利用干燥“咖啡渍”效应的逆过程,可一步形成混合周期性和非晶态层。HPC产生±40°的广角强共振,确保轻松准确的远程和长读数距离。在新西兰大白兔的前房内安装8个传感器,用手持探测器连续、准确地测量IOP长达6个月,无炎症迹象。