Rachel Martins Ventriglia, L. Bastos, Karla Figueiredo, Marley Vallasco
{"title":"Previsão da duração de carregamentos de embarcações PLSV","authors":"Rachel Martins Ventriglia, L. Bastos, Karla Figueiredo, Marley Vallasco","doi":"10.5753/eniac.2022.227313","DOIUrl":null,"url":null,"abstract":"As embarcações Pipe-laying Support Vessel (PLSV) realizam tarefas de interligação submarinas, que necessitam de diversos recursos materiais. Estes recursos são carregados nos navios, e atualmente o planejamento dos carregamentos é resolvido de forma heurística, com taxas de erros altas, em torno de 84%. Com o objetivo de auxiliar neste planejamento operacional, este trabalho propôs a investigação e seleção de diversos modelos de aprendizado de máquina para prever a duração dos carregamentos. Os modelos que apresentaram melhor desempenho na base de teste foram o Gradient Boosting, Regressão Linear e o Stacking Regressor, com um erro percentual médio absoluto de no máximo 36% nos dados de teste.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As embarcações Pipe-laying Support Vessel (PLSV) realizam tarefas de interligação submarinas, que necessitam de diversos recursos materiais. Estes recursos são carregados nos navios, e atualmente o planejamento dos carregamentos é resolvido de forma heurística, com taxas de erros altas, em torno de 84%. Com o objetivo de auxiliar neste planejamento operacional, este trabalho propôs a investigação e seleção de diversos modelos de aprendizado de máquina para prever a duração dos carregamentos. Os modelos que apresentaram melhor desempenho na base de teste foram o Gradient Boosting, Regressão Linear e o Stacking Regressor, com um erro percentual médio absoluto de no máximo 36% nos dados de teste.