FPGA implementation of bidirectional associative memory using simultaneous perturbation

Y. Maeda, M. Wakamura
{"title":"FPGA implementation of bidirectional associative memory using simultaneous perturbation","authors":"Y. Maeda, M. Wakamura","doi":"10.1109/NNSP.2003.1318029","DOIUrl":null,"url":null,"abstract":"Recurrent neural networks have interesting properties and can handle dynamic information processing unlike the ordinary feedforward neural networks. Bidirectional associative memory (BAM) is a typical recurrent network. Ordinarily, weights of the BAM are determined by the Hebb's learning. In this paper, a recursive learning scheme for BAM is proposed and its hardware implementation is described. The learning scheme is applicable to analogue BAM as well. A simulation result and details of the implementation are shown.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recurrent neural networks have interesting properties and can handle dynamic information processing unlike the ordinary feedforward neural networks. Bidirectional associative memory (BAM) is a typical recurrent network. Ordinarily, weights of the BAM are determined by the Hebb's learning. In this paper, a recursive learning scheme for BAM is proposed and its hardware implementation is described. The learning scheme is applicable to analogue BAM as well. A simulation result and details of the implementation are shown.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
同时摄动双向联想存储器的FPGA实现
与普通的前馈神经网络不同,递归神经网络具有有趣的特性,可以处理动态信息。双向联想记忆是一种典型的循环网络。通常,BAM的权重由Hebb学习决定。本文提出了一种基于BAM的递归学习方案,并对其硬件实现进行了描述。该学习方案同样适用于模拟BAM。给出了仿真结果和实现细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational decomposition of molecular signatures based on blind source separation of non-negative dependent sources with NMF A neural network method to improve prediction of protein-protein interaction sites in heterocomplexes Neuro-variational inversion of ocean color imagery Correlation-based feature detection using pulsed neural networks Computed simultaneous imaging of multiple biomarkers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1