{"title":"Pulse shrinkage based pre-bond through silicon vias test in 3D IC","authors":"Chang Hao, Huaguo Liang","doi":"10.1109/VTS.2015.7116267","DOIUrl":null,"url":null,"abstract":"Defects in TSV not only lead to variation in the propagation delay but also in the transition delay of the net connected to the TSV. A non-invasive approach for pre-bond TSV test based on pulse shrinkage is proposed to detect resistive open and leakage fault. TSVs are used as capacitive loads of their driving gates, then the pulse visiting the cyclic shrinkage cells will be shrunk until it vanishes completely. The shrinkage amount is digitized into a digital code to compare with an expected value of fault free. Experiments on fault detection are presented through HSPICE simulations using realistic models for a 45 nm CMOS technology. The results show the effectiveness in the detection of resistive open defects 0.2kΩ above and equivalent leakage resistance less than 40MΩ. The estimated design for testability area cost of our method is negligible for realistic dies.","PeriodicalId":187545,"journal":{"name":"2015 IEEE 33rd VLSI Test Symposium (VTS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 33rd VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2015.7116267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Defects in TSV not only lead to variation in the propagation delay but also in the transition delay of the net connected to the TSV. A non-invasive approach for pre-bond TSV test based on pulse shrinkage is proposed to detect resistive open and leakage fault. TSVs are used as capacitive loads of their driving gates, then the pulse visiting the cyclic shrinkage cells will be shrunk until it vanishes completely. The shrinkage amount is digitized into a digital code to compare with an expected value of fault free. Experiments on fault detection are presented through HSPICE simulations using realistic models for a 45 nm CMOS technology. The results show the effectiveness in the detection of resistive open defects 0.2kΩ above and equivalent leakage resistance less than 40MΩ. The estimated design for testability area cost of our method is negligible for realistic dies.