An integrated microfluidic system with field-effect-transistor-based biosensors for automatic highly-sensitive C-reactive protein measurement

C. Chu, Wen-Hsin Chang, W. Kao, Chih-Lin Lin, K. Chang, Yu-Lin Wang, Gwo-Bin Lee
{"title":"An integrated microfluidic system with field-effect-transistor-based biosensors for automatic highly-sensitive C-reactive protein measurement","authors":"C. Chu, Wen-Hsin Chang, W. Kao, Chih-Lin Lin, K. Chang, Yu-Lin Wang, Gwo-Bin Lee","doi":"10.1109/MEMSYS.2015.7051022","DOIUrl":null,"url":null,"abstract":"Rapid and accurate diagnosis of C-reactive protein (CRP) is crucial for preventing cardiovascular diseases because it is a well-known biomarker for evaluating risks of cardiovascular diseases. Our previous work has shown that a microfluidic system equipped with a field-effect-transistor (FET)-based biosensor could detect CRP in 0.1X PBS and provided a limit of detection (LOD) of 26 pM CRP without gate bias. To improve the LOD, a new microfluidic device with a new methodology for measuring FET-based biosensors is presented in this study. Not only can the proposed system work in a solution with a physiological salt concentration but it also detects CRP with ultra-high sensitivity in an automatic fashion. This is the first time that a FET-based biosensor can effectively and automatically detect CRP in a physiological salt concentration without decreasing the sensitivity. The LOD of CRP using aptamer-immobilized AlGaN/GaN high-electron-mobility transistors (HEMTs) was experimentally found to be 1fM, demonstrating the superior performance of this new technique. It may be used as a point-of-care device for CRP detection in the near future.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2015.7051022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Rapid and accurate diagnosis of C-reactive protein (CRP) is crucial for preventing cardiovascular diseases because it is a well-known biomarker for evaluating risks of cardiovascular diseases. Our previous work has shown that a microfluidic system equipped with a field-effect-transistor (FET)-based biosensor could detect CRP in 0.1X PBS and provided a limit of detection (LOD) of 26 pM CRP without gate bias. To improve the LOD, a new microfluidic device with a new methodology for measuring FET-based biosensors is presented in this study. Not only can the proposed system work in a solution with a physiological salt concentration but it also detects CRP with ultra-high sensitivity in an automatic fashion. This is the first time that a FET-based biosensor can effectively and automatically detect CRP in a physiological salt concentration without decreasing the sensitivity. The LOD of CRP using aptamer-immobilized AlGaN/GaN high-electron-mobility transistors (HEMTs) was experimentally found to be 1fM, demonstrating the superior performance of this new technique. It may be used as a point-of-care device for CRP detection in the near future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集成微流体系统与场效应晶体管为基础的生物传感器,用于自动高灵敏度的c反应蛋白测量
c反应蛋白(C-reactive protein, CRP)是一种众所周知的评价心血管疾病风险的生物标志物,其快速准确的诊断对于预防心血管疾病至关重要。我们之前的工作表明,配备场效应晶体管(FET)生物传感器的微流控系统可以在0.1X PBS中检测CRP,并提供26 pM CRP的检测限(LOD),无门偏置。为了提高LOD,本研究提出了一种新的微流控装置和一种新的方法来测量基于fet的生物传感器。该系统不仅能在生理盐浓度的溶液中工作,而且还能以超高灵敏度自动检测CRP。这是基于fet的生物传感器首次能够在不降低灵敏度的情况下有效自动检测生理盐浓度中的CRP。实验发现,采用适体固定化AlGaN/GaN高电子迁移率晶体管(HEMTs)的CRP的LOD为1fM,证明了该新技术的优越性能。在不久的将来,它可能会被用作一种即时检测CRP的设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamically-balanced folded-beam suspensions Fusion of cantilever and diaphragm pressure sensors according to frequency characteristics A nanomachined tunable oscillator controlled by electrostatic and optical force A low-power MEMS tunable photonic ring resonator for reconfigurable optical networks Room temperature synthesis of silicon dioxide thin films for MEMS and silicon surface texturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1