Morphological and Texture Features for HEp-2 Cells Classification

L. Nanni, M. Paci, F. C. Santos, J. Hyttinen
{"title":"Morphological and Texture Features for HEp-2 Cells Classification","authors":"L. Nanni, M. Paci, F. C. Santos, J. Hyttinen","doi":"10.1109/I3A.2014.11","DOIUrl":null,"url":null,"abstract":"This paper describes our texture descriptor ensemble aimed to compete for the Cell Level classification task (Task 1) in the \"Contest on Performance Evaluation on Indirect Immunofluorescence Image Analysis Systems\", hosted by the I3A Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images. Our system is based on the combination of 4 descriptors based on Local Binary Pattern (LBP) and 1 morphological feature set: the multiscale Pyramid LBP, Local Configuration Pattern, Rotation Invariant Co-occurrence among adjacent LBP, Extended LBP and finally Strandmark morphological features. From each image a total of 2643 features are extracted. The corresponding 5 feature sets are classified using Support Vector Machines and results are combined according to the sum rule. By using a 10-fold cross validation testing protocol, the proposed ensemble obtains 60.9% of accuracy, outperforming many state-of-art stand-alone texture descriptors as well as other ensembles.","PeriodicalId":103785,"journal":{"name":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I3A.2014.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper describes our texture descriptor ensemble aimed to compete for the Cell Level classification task (Task 1) in the "Contest on Performance Evaluation on Indirect Immunofluorescence Image Analysis Systems", hosted by the I3A Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images. Our system is based on the combination of 4 descriptors based on Local Binary Pattern (LBP) and 1 morphological feature set: the multiscale Pyramid LBP, Local Configuration Pattern, Rotation Invariant Co-occurrence among adjacent LBP, Extended LBP and finally Strandmark morphological features. From each image a total of 2643 features are extracted. The corresponding 5 feature sets are classified using Support Vector Machines and results are combined according to the sum rule. By using a 10-fold cross validation testing protocol, the proposed ensemble obtains 60.9% of accuracy, outperforming many state-of-art stand-alone texture descriptors as well as other ensembles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HEp-2细胞分类的形态学和纹理特征
本文描述了我们的纹理描述符集合,目的是在I3A间接免疫荧光图像模式识别技术研讨会主办的“间接免疫荧光图像分析系统性能评估竞赛”中竞争细胞水平分类任务(任务1)。该系统基于基于局部二值模式(LBP)的4个描述符和1个形态特征集的组合:多尺度金字塔型LBP、局部构型模式、相邻LBP之间的旋转不变共现、扩展LBP和最后的标志形态特征。从每张图像中共提取2643个特征。使用支持向量机对对应的5个特征集进行分类,并根据求和规则对结果进行组合。通过使用10倍交叉验证测试协议,所提出的集成获得了60.9%的准确率,优于许多最先进的独立纹理描述符以及其他集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HEp-2 Cell Classification Using Multi-resolution Local Patterns and Ensemble SVMs A Segmentation Method for Bone Marrow Cavity Imaging Using Graph Cuts Class-Specific Hierarchical Classification of HEp-2 Cell Images: The Case of Two Classes HEp-2 Cell Image Classification with Convolutional Neural Networks A Bag of Words Based Approach for Classification of HEp-2 Cell Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1