Cheng-Hsueh Tsai, F. Pepe, G. Mangraviti, Zhiwei Zong, J. Craninckx, P. Wambacq
{"title":"A 22.5–27.7-GHz Fast-Lock Bang-Bang Digital PLL in 28-nm CMOS for Millimeter-Wave Communication With 220-fs RMS Jitter","authors":"Cheng-Hsueh Tsai, F. Pepe, G. Mangraviti, Zhiwei Zong, J. Craninckx, P. Wambacq","doi":"10.1109/ESSCIRC.2019.8902868","DOIUrl":null,"url":null,"abstract":"We present a 22.5–27.7-GHz fast-lock low-phase-noise bang-bang digital phase-locked loop (PLL) for mm-wave communication. The fast lock is achieved with the help of the proposed gear-shift algorithm, scaling up the PLL bandwidth for faster settling, and orderly reducing it for jitter performance. A digitally controlled oscillator (DCO), based on transformer feedback with a tunable source-bridged capacitor, exhibits low phase noise (PN) over a wide tuning range (FoM of −184 dBc/Hz and FoMT of −191 dBc/Hz). The PLL occupies 0.09-mm2 core area and exhibits 220-fs RMS jitter while consuming 25 mW, giving FoMRMS of −239 dB. Its settling time improves from 780 to 45 µs with our gear-shift algorithm. For 60-GHz communication, with a frequency multiplication factor of 2.5, this PLL covers all six channel frequencies of IEEE-802.11ad and is capable of supporting 128 QAM and beyond.","PeriodicalId":402948,"journal":{"name":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2019.8902868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We present a 22.5–27.7-GHz fast-lock low-phase-noise bang-bang digital phase-locked loop (PLL) for mm-wave communication. The fast lock is achieved with the help of the proposed gear-shift algorithm, scaling up the PLL bandwidth for faster settling, and orderly reducing it for jitter performance. A digitally controlled oscillator (DCO), based on transformer feedback with a tunable source-bridged capacitor, exhibits low phase noise (PN) over a wide tuning range (FoM of −184 dBc/Hz and FoMT of −191 dBc/Hz). The PLL occupies 0.09-mm2 core area and exhibits 220-fs RMS jitter while consuming 25 mW, giving FoMRMS of −239 dB. Its settling time improves from 780 to 45 µs with our gear-shift algorithm. For 60-GHz communication, with a frequency multiplication factor of 2.5, this PLL covers all six channel frequencies of IEEE-802.11ad and is capable of supporting 128 QAM and beyond.