Abstraction-based relation mining for functional test generation

K. Gent, M. Hsiao
{"title":"Abstraction-based relation mining for functional test generation","authors":"K. Gent, M. Hsiao","doi":"10.1109/VTS.2015.7116286","DOIUrl":null,"url":null,"abstract":"Functional test generation and design validation frequently use stochastic methods for vector generation. However, for circuits with narrow paths or random-resistant corner cases, purely random techniques can fail to produce adequate results. Deterministic techniques can aid this process; however, they add significant computational complexity. This paper presents a Register Transfer Level (RTL) abstraction technique to derive relationships between inputs and path activations. The abstractions are built off of various program slices. Using such a variety of abstracted RTL models, we attempt to find patterns in the reduced state and input with their resulting branch activations. These relationships are then applied to guide stimuli generation in the concrete model. Experimental results show that this method allows for fast convergence on hard-to-reach states and achieves a performance increase of up to 9× together with a reduction of test lengths compared to previous hybrid search techniques.","PeriodicalId":187545,"journal":{"name":"2015 IEEE 33rd VLSI Test Symposium (VTS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 33rd VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2015.7116286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Functional test generation and design validation frequently use stochastic methods for vector generation. However, for circuits with narrow paths or random-resistant corner cases, purely random techniques can fail to produce adequate results. Deterministic techniques can aid this process; however, they add significant computational complexity. This paper presents a Register Transfer Level (RTL) abstraction technique to derive relationships between inputs and path activations. The abstractions are built off of various program slices. Using such a variety of abstracted RTL models, we attempt to find patterns in the reduced state and input with their resulting branch activations. These relationships are then applied to guide stimuli generation in the concrete model. Experimental results show that this method allows for fast convergence on hard-to-reach states and achieves a performance increase of up to 9× together with a reduction of test lengths compared to previous hybrid search techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于抽象的功能测试生成关系挖掘
功能测试生成和设计验证经常使用随机方法生成向量。然而,对于具有狭窄路径或抗随机拐角情况的电路,纯随机技术可能无法产生足够的结果。确定性技术可以帮助这一过程;然而,它们增加了显著的计算复杂性。本文提出了一种寄存器传输层(RTL)抽象技术来推导输入和路径激活之间的关系。抽象是基于不同的程序片段构建的。使用各种抽象的RTL模型,我们试图找到简化状态下的模式,并输入它们产生的分支激活。然后应用这些关系来指导具体模型中的刺激生成。实验结果表明,与以前的混合搜索技术相比,该方法可以在难以到达的状态上快速收敛,性能提高了9倍,同时减少了测试长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling unauthorized RF transmission below noise floor with no detectable impact on primary communication performance Innovative practices session 7C: Mixed signal test and debug Impact of parameter variations on FinFET faults A call to action: Securing IEEE 1687 and the need for an IEEE test Security Standard An early prediction methodology for aging sensor insertion to assure safe circuit operation due to NBTI aging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1