Mask qualification of a shifted gate contact issue by physical e-beam inspection and high landing energy SEM review : DI: Defect Inspection and Reduction
J. G. Sheridan, Hsiao-Chi Peng, C. Huang, V. Aristov, Hoang Nguyen, Y. Khopkar, Abhinav Jain, Jay K Shah, F. Levitov
{"title":"Mask qualification of a shifted gate contact issue by physical e-beam inspection and high landing energy SEM review : DI: Defect Inspection and Reduction","authors":"J. G. Sheridan, Hsiao-Chi Peng, C. Huang, V. Aristov, Hoang Nguyen, Y. Khopkar, Abhinav Jain, Jay K Shah, F. Levitov","doi":"10.1109/ASMC.2019.8791751","DOIUrl":null,"url":null,"abstract":"Photomask issues can result in shifted pattern defects printed on the wafer. In the case of sub-1x nm nodes, these pattern defects of interest (DOI) can be difficult for conventional optical inspections to detect. In this paper we present a case study of a new mask qualification for a MOL gate open (GO) contact mask layer. The new mask was introduced to compensate for a known open between trench silicide (TS) contact and GO. During qualification, a shift in the GO overlay was seen on one section of the wafer and suspected to be the cause of a TS-gate short. A Design of Experiments (DOE) was created to investigate if the issue was solely mask related or if it could be mitigated during processing (litho/etch). Physical mode e-beam inspection was used to monitor the DOE wafers, however the resolution of the e-beam inspection tool was not sufficient to conclusively classify the defects observed. A high resolution, high landing energy SEM defect review was introduced post e-beam inspection to better monitor the splits running as part of the DOE.","PeriodicalId":287541,"journal":{"name":"2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC.2019.8791751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Photomask issues can result in shifted pattern defects printed on the wafer. In the case of sub-1x nm nodes, these pattern defects of interest (DOI) can be difficult for conventional optical inspections to detect. In this paper we present a case study of a new mask qualification for a MOL gate open (GO) contact mask layer. The new mask was introduced to compensate for a known open between trench silicide (TS) contact and GO. During qualification, a shift in the GO overlay was seen on one section of the wafer and suspected to be the cause of a TS-gate short. A Design of Experiments (DOE) was created to investigate if the issue was solely mask related or if it could be mitigated during processing (litho/etch). Physical mode e-beam inspection was used to monitor the DOE wafers, however the resolution of the e-beam inspection tool was not sufficient to conclusively classify the defects observed. A high resolution, high landing energy SEM defect review was introduced post e-beam inspection to better monitor the splits running as part of the DOE.