Realeasy: Real-Time capable Simulation to Reality Domain Adaptation

Alexander Dürr, Liam Neric, Volker Krueger, E. A. Topp
{"title":"Realeasy: Real-Time capable Simulation to Reality Domain Adaptation","authors":"Alexander Dürr, Liam Neric, Volker Krueger, E. A. Topp","doi":"10.1109/CASE49439.2021.9551626","DOIUrl":null,"url":null,"abstract":"We address the problem of insufficient quality of robot simulators to produce precise sensor readings for joint positions, velocities and torques. Realistic simulations of sensor readings are particularly important for real time robot control laws and for data intensive Reinforcement Learning of robot movements in simulation. We systematically construct two architectures based on Long Short-Term Memory to model the difference between simulated and real sensor readings for online and offline application. Our solution is easy to integrate into existing Robot Operating System frameworks and its formulation is neither robot nor task specific. We demonstrate robust behavior and transferability of the learned model between individual Franka Emika Panda robots. Our experiments show a reduction in torque mean squared error of at least one order of magnitude. The collected data set, the plug-and-play Realeasy model for the Panda robot and a reproducible real-time docker setup are shared alongside the code.22https://sites.google.com/ulund.org/realeasy","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We address the problem of insufficient quality of robot simulators to produce precise sensor readings for joint positions, velocities and torques. Realistic simulations of sensor readings are particularly important for real time robot control laws and for data intensive Reinforcement Learning of robot movements in simulation. We systematically construct two architectures based on Long Short-Term Memory to model the difference between simulated and real sensor readings for online and offline application. Our solution is easy to integrate into existing Robot Operating System frameworks and its formulation is neither robot nor task specific. We demonstrate robust behavior and transferability of the learned model between individual Franka Emika Panda robots. Our experiments show a reduction in torque mean squared error of at least one order of magnitude. The collected data set, the plug-and-play Realeasy model for the Panda robot and a reproducible real-time docker setup are shared alongside the code.22https://sites.google.com/ulund.org/realeasy
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Realeasy:能够实时模拟到现实领域的适应
我们解决了机器人模拟器质量不足的问题,无法产生关节位置,速度和扭矩的精确传感器读数。传感器读数的真实模拟对于实时机器人控制规律和模拟中机器人运动的数据密集型强化学习尤为重要。我们系统地构建了两个基于长短期记忆的架构,以模拟在线和离线应用中传感器模拟和真实读数之间的差异。我们的解决方案很容易集成到现有的机器人操作系统框架中,其公式既不针对机器人也不针对任务。我们证明了学习模型在个体Franka Emika Panda机器人之间的鲁棒性和可移植性。我们的实验表明,扭矩的均方误差至少减少了一个数量级。收集的数据集、用于Panda机器人的即插即用Realeasy模型和可复制的实时docker设置与代码一起共享
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planar Pushing of Unknown Objects Using a Large-Scale Simulation Dataset and Few-Shot Learning A configurator for supervisory controllers of roadside systems Maintaining Connectivity in Multi-Rover Networks for Lunar Exploration Missions VLC-SE: Visual-Lengthwise Configuration Self-Estimator of Continuum Robots Multi-zone indoor temperature prediction based on Graph Attention Network and Gated Recurrent Unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1