Mjx: A framework for Mahjong AI research

Sotetsu Koyamada, Keigo Habara, Nao Goto, Shinri Okano, Soichiro Nishimori, Shin Ishii
{"title":"Mjx: A framework for Mahjong AI research","authors":"Sotetsu Koyamada, Keigo Habara, Nao Goto, Shinri Okano, Soichiro Nishimori, Shin Ishii","doi":"10.1109/CoG51982.2022.9893712","DOIUrl":null,"url":null,"abstract":"Numerous games have served as testbeds for artificial intelligence (AI) research to measure its progress. Mahjong is a highly challenging multi-agent imperfect information game with a vast player population. However, a challenge with using Mahjong as a testbed for AI is the lack of a publicly available framework that is fast, easy to use and implements popular rules for human players. We propose and describe Mjx, an open-source Mahjong framework, which implements one of the most popular Mahjong rules, riichi Mahjong (Japanese Mahjong). We compared the execution speed of Mjx with existing popular open-source software and demonstrated that it achieves 100x faster performance. Mjx is available at https://github.conmjx-project/mjx.","PeriodicalId":394281,"journal":{"name":"2022 IEEE Conference on Games (CoG)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Games (CoG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoG51982.2022.9893712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Numerous games have served as testbeds for artificial intelligence (AI) research to measure its progress. Mahjong is a highly challenging multi-agent imperfect information game with a vast player population. However, a challenge with using Mahjong as a testbed for AI is the lack of a publicly available framework that is fast, easy to use and implements popular rules for human players. We propose and describe Mjx, an open-source Mahjong framework, which implements one of the most popular Mahjong rules, riichi Mahjong (Japanese Mahjong). We compared the execution speed of Mjx with existing popular open-source software and demonstrated that it achieves 100x faster performance. Mjx is available at https://github.conmjx-project/mjx.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
麻将AI研究的框架
许多游戏已经成为人工智能(AI)研究的测试平台,以衡量其进展。麻将是一种极具挑战性的多智能体不完全信息游戏,拥有庞大的玩家群体。然而,使用麻将作为人工智能测试平台的一个挑战是缺乏一个公开可用的框架,该框架快速,易于使用,并为人类玩家实现流行的规则。我们提出并描述Mjx,一个开源的麻将框架,它实现了最流行的麻将规则之一,riichi麻将(日本麻将)。我们将Mjx的执行速度与现有流行的开源软件进行了比较,并证明它的性能提高了100倍。Mjx可在https://github.conmjx-project/mjx上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Game Soundtrack Tempo Based on Players’ Actions A Viewpoint on Construction of Networked Model of Event-triggered Hybrid Dynamic Games Towards a Competitive 3-Player Mahjong AI using Deep Reinforcement Learning MiaoSuan Wargame: A Multi-Mode Integrated Platform for Imperfect Information Game Evaluating Navigation Behavior of Agents in Games using Non-Parametric Statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1