Design of Active-RC Filters Minimizing Sensitivities with Ant Colony Optimization

Leandro Demarco Vedelago, G. Peretti, E. Romero, G. Demarco
{"title":"Design of Active-RC Filters Minimizing Sensitivities with Ant Colony Optimization","authors":"Leandro Demarco Vedelago, G. Peretti, E. Romero, G. Demarco","doi":"10.1109/ARGENCON55245.2022.9939988","DOIUrl":null,"url":null,"abstract":"This work employs Ant Colony Optimization (ACO) to solve active-RC bi-quadratic filter design considering passive sensitivities minimization. We propose a new discrete version (D-ACOR) based on the operating principles of ACO with real domain. We also solve the problem exactly to compare the results of the algorithms against the best possible solutions. For showing the D-ACOR performance, we take as case studies two biquadratic filters: a low-pass and a bandpass, both with an infinite-gain multiple-feedback topology. The results are excel-lent because the algorithm achieves solutions with minimal sen-sitivities that meet the specifications. Furthermore, the performance comparison with other heuristics shows that D-ACOR has lower sensitivity values and presents better computational efficiency even if it requires a more significant number of independent runs to find successful solutions.","PeriodicalId":318846,"journal":{"name":"2022 IEEE Biennial Congress of Argentina (ARGENCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Biennial Congress of Argentina (ARGENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARGENCON55245.2022.9939988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work employs Ant Colony Optimization (ACO) to solve active-RC bi-quadratic filter design considering passive sensitivities minimization. We propose a new discrete version (D-ACOR) based on the operating principles of ACO with real domain. We also solve the problem exactly to compare the results of the algorithms against the best possible solutions. For showing the D-ACOR performance, we take as case studies two biquadratic filters: a low-pass and a bandpass, both with an infinite-gain multiple-feedback topology. The results are excel-lent because the algorithm achieves solutions with minimal sen-sitivities that meet the specifications. Furthermore, the performance comparison with other heuristics shows that D-ACOR has lower sensitivity values and presents better computational efficiency even if it requires a more significant number of independent runs to find successful solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于蚁群优化的最小灵敏度有源rc滤波器设计
本文采用蚁群算法求解考虑被动灵敏度最小化的有源rc双二次滤波器设计问题。基于实域蚁群算法的工作原理,提出了一种新的离散版本(D-ACOR)。我们还精确地解决了这个问题,将算法的结果与最佳可能解进行比较。为了展示D-ACOR的性能,我们以两个双二次滤波器作为案例研究:一个低通和一个带通,两者都具有无限增益多反馈拓扑。该算法以最小的灵敏度获得了满足规范要求的解,结果非常好。此外,与其他启发式算法的性能比较表明,即使D-ACOR需要更多的独立运行才能找到成功的解,但它的灵敏度值更低,计算效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Propuestas de normativas para la disposición final de equipamientos de un parque eólico al finalizar su vida productiva Proyecto Laboratorios remotos en carreras de ingeniería de la Universidad Nacional de Tucumán Control de un convertidor DC-DC con puentes duales activos para adaptar niveles de tensión en microrredes de DC usando linealización por realimentación Las Competencias Transversales en Ingeniería. El Seminario Taller Como Herramienta Metodológica Procedimiento de sintonizado de tanques resonantes LCC para carga inalámbrica de vehículos eléctricos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1