An electromagnetic micromanipulation system for single-cell manipulation

M. Gauthier, E. Piat
{"title":"An electromagnetic micromanipulation system for single-cell manipulation","authors":"M. Gauthier, E. Piat","doi":"10.1163/156856302322756450","DOIUrl":null,"url":null,"abstract":"Biological objects were micromanipulated with a magnetic microactuator. These objects are pushed with a small ferromagnetic particle whose size can be as small as 10 × 10 × 5 μm3. This particle is called the manipulator and is moved thanks to a permanent magnet. This magnetic device allows the manipulation of objects in an extremely confined space. As biological objects are fragile, the force applied on them must be controlled during the manipulation. The model we present allows to determine the force applied by the device on the manipulated object. Several experimental measurements are presented in order to validate the model.","PeriodicalId":150257,"journal":{"name":"Journal of Micromechatronics","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1163/156856302322756450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

Biological objects were micromanipulated with a magnetic microactuator. These objects are pushed with a small ferromagnetic particle whose size can be as small as 10 × 10 × 5 μm3. This particle is called the manipulator and is moved thanks to a permanent magnet. This magnetic device allows the manipulation of objects in an extremely confined space. As biological objects are fragile, the force applied on them must be controlled during the manipulation. The model we present allows to determine the force applied by the device on the manipulated object. Several experimental measurements are presented in order to validate the model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于单细胞操作的电磁微操作系统
用磁性微驱动器对生物物体进行微操作。这些物体被一个小的铁磁粒子推动,其大小可以小到10 × 10 × 5 μm3。这个粒子被称为操纵者,它的移动要归功于一个永磁体。这种磁性装置可以在极其有限的空间内操纵物体。由于生物物体是脆弱的,在操作过程中必须控制施加在它们身上的力。我们提出的模型允许确定装置施加在被操纵物体上的力。为了验证该模型,给出了几个实验测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fabrication of electrostatic micro-actuators for a hard disk drive application Micro parts reinforced by addition of unidirectional whiskers in laser photolithography Design and fabrication of the micromirror array for projection display Automatic micromanipulating system for biological applications with visual servo control Dangler type vibrating gyroscope using the parallel beam structure formed by sheet metal molding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1