Hierarchical DNN with Heterogeneous Computing Enabled High-Performance DNA Sequencing

Shaobo Luo, Zhiyuan Xie, Gengxin Chen, Lei Cui, Mei Yan, Xiwei Huang, Shuwei Li, Changhai Man, Wei Mao, Hao Yu
{"title":"Hierarchical DNN with Heterogeneous Computing Enabled High-Performance DNA Sequencing","authors":"Shaobo Luo, Zhiyuan Xie, Gengxin Chen, Lei Cui, Mei Yan, Xiwei Huang, Shuwei Li, Changhai Man, Wei Mao, Hao Yu","doi":"10.1109/APCCAS55924.2022.10090281","DOIUrl":null,"url":null,"abstract":"DNA sequencing is a popular tool to demystify the code of living organisms and is reforming the medical, pharmaceutical and biotech industries. The Next-Generation Sequencing (NGS) plays a vital role in high-throughput DNA sequencing with massively parallel data generation. Nevertheless, the massive amount of data imposes great challenges for data analysis. It is arduous to reach a low error rate for handling noisy and/or biased signals owing to the imperfect biochemical reactions and imaging systems. Furthermore, a homogeneous computing system lacks computing power and memory bandwidth. Therefore, in this work, a heterogeneous computing platform with a hierarchical deep neural network sequencing pipeline is proposed to improve the sequencing quality and increase processing speed. Experiments demonstrate that the proposed work reached higher effective throughput (12.18% more clusters found), lower error rate (0.0175%), higher quality score (%Q30 99.27%), and 19% faster. The reported work empowers virus detection, diseases diagnostic, and other potential biomedical applications.","PeriodicalId":243739,"journal":{"name":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS55924.2022.10090281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

DNA sequencing is a popular tool to demystify the code of living organisms and is reforming the medical, pharmaceutical and biotech industries. The Next-Generation Sequencing (NGS) plays a vital role in high-throughput DNA sequencing with massively parallel data generation. Nevertheless, the massive amount of data imposes great challenges for data analysis. It is arduous to reach a low error rate for handling noisy and/or biased signals owing to the imperfect biochemical reactions and imaging systems. Furthermore, a homogeneous computing system lacks computing power and memory bandwidth. Therefore, in this work, a heterogeneous computing platform with a hierarchical deep neural network sequencing pipeline is proposed to improve the sequencing quality and increase processing speed. Experiments demonstrate that the proposed work reached higher effective throughput (12.18% more clusters found), lower error rate (0.0175%), higher quality score (%Q30 99.27%), and 19% faster. The reported work empowers virus detection, diseases diagnostic, and other potential biomedical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
层次DNN与异构计算支持高性能DNA测序
DNA测序是一种流行的工具,可以揭开生物体密码的神秘面纱,并正在改革医疗、制药和生物技术行业。新一代测序技术(NGS)在高通量DNA测序和大量并行数据生成中起着至关重要的作用。然而,海量的数据给数据分析带来了巨大的挑战。由于生化反应和成像系统的不完善,在处理噪声和/或偏置信号时很难达到低错误率。此外,同构计算系统缺乏计算能力和内存带宽。为此,本文提出了一种基于层次深度神经网络测序流水线的异构计算平台,以提高测序质量和处理速度。实验表明,该算法的有效吞吐量提高了12.18%,错误率降低了0.0175%,质量分数提高了99.27%,速度提高了19%。报告的工作增强了病毒检测、疾病诊断和其他潜在的生物医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Energy-Efficient Mixed-Bit ReRAM-based Computing-in-Memory CNN Accelerator with Fully Parallel Readout An Eigen-decomposition Free Method for Computing Graph Fourier Transform Centrality A 60-GHz CMOS Balanced Power Amplifier with Miniaturized Quadrature Hybrids Achieving 19.0-dBm Output Power and 24.4% Peak PAE A Vector Pair Based DWA Algorithm for Linearity Enhancement of CDACs in the NS-SAR ADC Optimal Evasive Path Planning with Velocity Constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1