Solving 2-D Slamming Problems by the MPS Method With Source Term Correction

Ruosi Zha, H. Peng, W. Qiu
{"title":"Solving 2-D Slamming Problems by the MPS Method With Source Term Correction","authors":"Ruosi Zha, H. Peng, W. Qiu","doi":"10.1115/OMAE2018-78441","DOIUrl":null,"url":null,"abstract":"An improved moving particle semi-implicit (MPS) method was developed to solve water entry problems. The traditional mixed source term was modified based on a prediction-correction scheme to suppress pressure oscillations. An improved free surface identification method was implemented for fluid computations. A weak coupling method was adopted for fluid-structure interaction. The structures were modeled by isotropic linear elastic particles. The application of the source term correction method leads to a better pressure prediction and therefore a more accurate interaction between the fluid and the structure. Validation studies were carried out for water entry of two rigid wedges, a rigid ship section, and a flexible wedge. The results by the present MPS method are in good agreement with experimental data and other published numerical results.","PeriodicalId":106551,"journal":{"name":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2018-78441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An improved moving particle semi-implicit (MPS) method was developed to solve water entry problems. The traditional mixed source term was modified based on a prediction-correction scheme to suppress pressure oscillations. An improved free surface identification method was implemented for fluid computations. A weak coupling method was adopted for fluid-structure interaction. The structures were modeled by isotropic linear elastic particles. The application of the source term correction method leads to a better pressure prediction and therefore a more accurate interaction between the fluid and the structure. Validation studies were carried out for water entry of two rigid wedges, a rigid ship section, and a flexible wedge. The results by the present MPS method are in good agreement with experimental data and other published numerical results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用源项校正的MPS法求解二维撞击问题
提出了一种改进的运动粒子半隐式(MPS)方法来求解入水问题。基于一种预测校正方案对传统的混合源项进行了修正,以抑制压力振荡。在流体计算中实现了一种改进的自由曲面识别方法。流固耦合采用弱耦合方法。该结构采用各向同性线弹性粒子模型。源项校正方法的应用可以更好地预测压力,从而更准确地反映流体与结构之间的相互作用。验证研究进行了水进入两个刚性楔形,刚性船体部分,和柔性楔形。本文方法的计算结果与实验数据和其他已发表的数值结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Study of Water Cutoff Performance of Steel Pipe Sheet Piles With Interlocked Joint Field Study on the Effects of Impact Frequency on the Axial and Lateral Capacity of Driven Pipe Piles in Sand Scale Model Investigations on Vibro Pile Driving Anchor Sharing in Sands: Centrifuge Modelling and Soil Element Testing to Characterise Multi-Directional Loadings A 2D Experimental and Numerical Study of Moonpools With Recess
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1