UHF piezoelectric quartz mems magnetometers based on acoustic coupling of flexural and thickness shear modes

Hung D. Nguyen, Joshua A. Erbland, L. Sorenson, R. Perahia, Lian X. Huang, R. Joyce, Y. Yoon, D. Kirby, Tracy J. Boden, Robert B. McElwain, D. Chang
{"title":"UHF piezoelectric quartz mems magnetometers based on acoustic coupling of flexural and thickness shear modes","authors":"Hung D. Nguyen, Joshua A. Erbland, L. Sorenson, R. Perahia, Lian X. Huang, R. Joyce, Y. Yoon, D. Kirby, Tracy J. Boden, Robert B. McElwain, D. Chang","doi":"10.1109/MEMSYS.2015.7051116","DOIUrl":null,"url":null,"abstract":"This paper reports the design, fabrication, and characterization of piezoelectric quartz MEMS magnetometers based on acoustic coupling between resonance modes. The magnetic sensors described herein employ a novel transduction scheme to upconvert the desired near-DC magnetic field signal (using the fundamental flexural mode) onto frequency modulated (FM) sidebands of the primary quartz thickness shear (TS) oscillation at frequencies above 500 MHz. First-generation devices exhibit flexural and TS resonances at 2.77 kHz and at 583.31 MHz, respectively, and magnetic sensitivity of 63.6 V/T was measured with an AC loop current of 9.2 mA. This novel sensing method, intended for electronic compassing, illuminates the interactions between low and high frequency acoustic modes within resonant devices.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2015.7051116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper reports the design, fabrication, and characterization of piezoelectric quartz MEMS magnetometers based on acoustic coupling between resonance modes. The magnetic sensors described herein employ a novel transduction scheme to upconvert the desired near-DC magnetic field signal (using the fundamental flexural mode) onto frequency modulated (FM) sidebands of the primary quartz thickness shear (TS) oscillation at frequencies above 500 MHz. First-generation devices exhibit flexural and TS resonances at 2.77 kHz and at 583.31 MHz, respectively, and magnetic sensitivity of 63.6 V/T was measured with an AC loop current of 9.2 mA. This novel sensing method, intended for electronic compassing, illuminates the interactions between low and high frequency acoustic modes within resonant devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于弯曲和厚度剪切模式声耦合的超高频压电石英mems磁强计
本文报道了基于共振模式间声学耦合的压电石英MEMS磁强计的设计、制造和表征。本文描述的磁传感器采用一种新颖的转导方案,将所需的近直流磁场信号(使用基本弯曲模式)上转换到频率高于500 MHz的原始石英厚度剪切(TS)振荡的调频(FM)边带。第一代器件分别在2.77 kHz和583.31 MHz表现出弯曲和TS共振,在交流回路电流为9.2 mA时测得磁灵敏度为63.6 V/T。这种用于电子罗盘的新型传感方法,阐明了谐振器件内低频和高频声学模式之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamically-balanced folded-beam suspensions Fusion of cantilever and diaphragm pressure sensors according to frequency characteristics A nanomachined tunable oscillator controlled by electrostatic and optical force A low-power MEMS tunable photonic ring resonator for reconfigurable optical networks Room temperature synthesis of silicon dioxide thin films for MEMS and silicon surface texturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1