Transformer-based Sarcasm Detection in English and Slovene Language

Matic Rašl, Mitja Zalik, Vid Keršič
{"title":"Transformer-based Sarcasm Detection in English and Slovene Language","authors":"Matic Rašl, Mitja Zalik, Vid Keršič","doi":"10.18690/978-961-286-516-0.10","DOIUrl":null,"url":null,"abstract":"Sarcasm detection is an important problem in the field of natural language processing. In this pa-per, we compare performances of the three neural networks for sarcasm detection on English and Slovene datasets. Each network is based on a di˙erent transformer model: RoBERTa, Distil-Bert, and DistilBert – multilingual. In addition to the existing Twitter-based English dataset, we also created the Slovene dataset using the same approach. An F1 score of 0.72 and 0.88 was achieved in the English and Slovene dataset, re-spectively.","PeriodicalId":282591,"journal":{"name":"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 7th Student Computer Science Research Conference (StuCoSReC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18690/978-961-286-516-0.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sarcasm detection is an important problem in the field of natural language processing. In this pa-per, we compare performances of the three neural networks for sarcasm detection on English and Slovene datasets. Each network is based on a di˙erent transformer model: RoBERTa, Distil-Bert, and DistilBert – multilingual. In addition to the existing Twitter-based English dataset, we also created the Slovene dataset using the same approach. An F1 score of 0.72 and 0.88 was achieved in the English and Slovene dataset, re-spectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于变压器的英语和斯洛文尼亚语讽刺检测
讽刺检测是自然语言处理领域的一个重要问题。在本文中,我们比较了三种神经网络在英语和斯洛文尼亚语数据集上的讽刺检测性能。每个网络都基于一个异变模型:RoBERTa、蒸馏器-伯特和蒸馏器-多语言。除了现有的基于twitter的英语数据集之外,我们还使用相同的方法创建了斯洛文尼亚语数据集。英语和斯洛文尼亚语数据集的F1得分分别为0.72和0.88。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leaf Segmentation of Rosette Plants using Rough K-Means in CIELab Color Space System for Remote Collaborative Embedded Development Adversarial Image Perturbation with a Genetic Algorithm Interactive Evolutionary Computation Approach to Permutation Flow Shop Scheduling Problem Methodology for the Assessment of the Text Similarity of Documents in the CORE Open Access Data Set of Scholarly Documents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1